Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Radiosurg SBRT ; 4(3): 203-212, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29296445

RESUMO

Purpose: Analysis of intrafraction motion in patients with intracranial targets treated with frameless, mask based stereotactic radiosurgery / radiotherapy using standard couch and 6D-skull tracking on CyberKnife. Materials and methods: Twenty-seven treatment datasets of fifteen patients were analyzed. For each sequential pair of images, the correction to the target position (position "offset") in six-degrees of motion was obtained. These offsets were used to calculate intrafraction shifts, and their statistical distribution. PTV margins were calculated, based on Van Herk formula. Results: The mean ± 1 SD intrafraction translationals were 0.27±0.61mm in left-right, 0.24±0.62mm in antero-posterior and 0.14±0.24mm in supero-inferior direction, and rotations were 0.13±0.21 degrees roll, 0.18±0.25 degrees pitch and 0.28±0.44 degrees yaw. Most intrafraction shifts were ≤ 1mm and 1 degree. Fourteen instances of intrafraction shifts exceeding the robotic correction threshold were noted. Calculated PTV margins were 1mm, 1mm and 0.4mm for for left-right, antero-posterior and supero-inferior directions, respectively. Conclusions: CyberKnife 6D-skull tracking with 1mm PTV margin effectively compensates for intrafraction motion. The occasional large intrafraction movements may assume significance for techniques not employing intrafraction motion management.

2.
Neurol India ; 61(3): 277-81, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23860148

RESUMO

PURPOSE: To assess the setup errors and intrafraction motion in patients treated with frame-based and frameless stereotactic radiosurgery (SRS). MATERIALS AND METHODS: Ten patients treated with frame-based and six patients treated with frameless radiosurgery were prospectively enrolled in the study. Leksell frame was used for frame-based and a customized uniframe orfit cast for frameless techniques. Cone beam computed tomography (CBCT) scans were taken immediately before and after each treatment to evaluate the positional accuracy and corrections applied with the use of hexapod couch for both groups. RESULTS: The mean translational shifts with frame-based SRS were 1.00 ± 0.30 mm in the lateral direction (X), 0.20 ± 1.20 mm in craniocaudal direction (Y) and -0.10 ± 0.31 mm in the anteroposterior direction (Z). The rotational shifts for frame-based treatments were as follows: roll 0.32 ± 0.70, pitch 0.44 ± 0.66 and yaw 0.20 ± 0.4. For frameless SRS, translational shifts were -0.40 ± 0.90, 1.10 ± 1.10, and 0.50 ± 1.30 mm in X, Y, and Z directions, respectively, and rotational shifts were -0.11 ± 0.78, 0.20 ± 0.44, and 0.29 ± 0.35 in roll, pitch, and yaw, respectively. Intrafraction shifts with frame-based SRS were: X = 0.60 ± 1.80 mm, Y = 0.20 ± 0.60 mm, and Z = 0.00 ± 0.05 mm; and rotational shifts were: roll 0.01 ± 0.27, pitch 0.06 ± 0.15, and yaw 0.01 ± 0.09. For frameless SRS, these were: X = 0.11 ± 0.20 mm, Y = 0.20 ± 0.40 mm, and Z = 0.20 ± 0.20 mm and rotational shifts were: roll 0.09 ± 0.23, pitch 0.00 ± 0.12, and yaw 0.00 ± 0.09. CONCLUSIONS: In our experience, set up accuracy of frameless SRS is as good as frame-based SRS. With availability of verification methods such as CBCT and hexapod couch, an accurate and precise treatment delivery is feasible with frameless techniques.


Assuntos
Encéfalo/cirurgia , Radiocirurgia/métodos , Técnicas Estereotáxicas/instrumentação , Adulto , Idoso , Encéfalo/patologia , Tomografia Computadorizada de Feixe Cônico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiocirurgia/instrumentação , Radiocirurgia/normas , Radioterapia Guiada por Imagem/tendências
3.
J Med Phys ; 37(4): 207-13, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23293452

RESUMO

Homogeneity Index (HI) is an objective tool to analyz the uniformity of dose distribution in the target volume. Various formulae have been described in literature for its calculation but there is paucity of data regarding the ideal formula and the factors affecting this index. This study was undertaken to analyze HI in our patients using various formulae and to find out the co-relation between HI and prescribed dose, target volume and target location. A retrospective review of 99 patients was performed. HI was calculated using five different formulae (A-E). The patients were divided in five groups each, based on prescribed dose, target volume and target location and mean HI of each group was analysed to find the co-relation between these factors and HI. When there were multiple target volumes the primary target volume was studied. The statistical calculation was done using SPSS version 16.0. Ninety nine patients were found evaluable with 75 males and 24 females. Ninety five patients were treated with radical intent and four with palliative intent. The sites treated were head and neck (46.4%), Pelvis (17.1%), brain (15.1%), abdomen (12.1%), and thorax (6.1%). The mean prescribed dose was 4304 cGy (centiGray) and the mean target volume was 476.2 cc. The mean value of HI was 1.21, 2.08, 30.13, 21.51 and 1.27 with different formulae. There was considerable agreement between HI calculated using various formulae specially the formulae considering prescribed dose (C, D). On statistical analysis, there was no significant co-relation between the location and volume of target but there was a trend toward better HI with increasing prescribed dose. Future studies with more number of patients can confirm our results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...