Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 42(8): 1023-1036, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35708027

RESUMO

BACKGROUND: Maladapted endothelial cells (ECs) secrete ENPP2 (ectonucleotide pyrophosphatase/phosphodiesterase 2; autotaxin)-a lysophospholipase D that generates lysophosphatidic acids (LPAs). ENPP2 derived from the arterial wall promotes atherogenic monocyte adhesion induced by generating LPAs, such as arachidonoyl-LPA (LPA20:4), from oxidized lipoproteins. Here, we aimed to determine the role of endothelial ENPP2 in the production of LPAs and atherosclerosis. METHODS: We quantified atherosclerosis in mice harboring loxP-flanked Enpp2 alleles crossed with Apoe-/- mice expressing tamoxifen-inducible Cre recombinase under the control of the EC-specific bone marrow X kinase promoter after 12 weeks of high-fat diet feeding. RESULTS: A tamoxifen-induced EC-specific Enpp2 knockout decreased atherosclerosis, accumulation of lesional macrophages, monocyte adhesion, and expression of endothelial CXCL (C-X-C motif chemokine ligand) 1 in male and female Apoe-/- mice. In vitro, ENPP2 mediated the mildly oxidized LDL (low-density lipoprotein)-induced expression of CXCL1 in aortic ECs by generating LPA20:4, palmitoyl-LPA (LPA16:0), and oleoyl-LPA (LPA18:1). ENPP2 and its activity were detected on the endothelial surface by confocal imaging. The expression of endothelial Enpp2 established a strong correlation between the plasma levels of LPA16:0, stearoyl-LPA (LPA18:0), and LPA18:1 and plaque size and a strong negative correlation between the LPA levels and ENPP2 activity in the plasma. Moreover, endothelial Enpp2 knockout increased the weight of high-fat diet-fed male Apoe-/- mice. CONCLUSIONS: We demonstrated that the expression of ENPP2 in ECs promotes atherosclerosis and endothelial inflammation in a sex-independent manner. This might be due to the generation of LPA20:4, LPA16:0, and LPA18:1 from mildly oxidized lipoproteins on the endothelial surface.


Assuntos
Aterosclerose , Células Endoteliais , Diester Fosfórico Hidrolases , Animais , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Feminino , Lisofosfolipídeos , Masculino , Camundongos , Camundongos Knockout para ApoE , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Tamoxifeno
2.
Arterioscler Thromb Vasc Biol ; 40(3): 583-596, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31996026

RESUMO

OBJECTIVE: Inflammatory activation changes the mitochondrial function of macrophages from oxidative phosphorylation to reactive oxygen species production, which may promote necrotic core formation in atherosclerotic lesions. In hypoxic and cancer cells, HIF-1α (hypoxia-inducible factor) promotes oxygen-independent energy production by microRNAs. Therefore, we studied the role of HIF-1α in the regulation of macrophage energy metabolism in the context of atherosclerosis. Approach and Results: Myeloid cell-specific deletion of Hif1a reduced atherosclerosis and necrotic core formation by limiting macrophage necroptosis in apolipoprotein E-deficient mice. In inflammatory bone marrow-derived macrophages, deletion of Hif1a increased oxidative phosphorylation, ATP levels, and the expression of genes encoding mitochondrial proteins and reduced reactive oxygen species production and necroptosis. microRNA expression profiling showed that HIF-1α upregulates miR-210 and downregulates miR-383 levels in lesional macrophages and inflammatory bone marrow-derived macrophages. In contrast to miR-210, which inhibited oxidative phosphorylation and enhanced mitochondrial reactive oxygen species production, miR-383 increased ATP levels and inhibited necroptosis. The effect of miR-210 was due to targeting 2,4-dienoyl-CoA reductase, which is essential in the ß oxidation of unsaturated fatty acids. miR-383 affected the DNA damage repair pathway in bone marrow-derived macrophages by targeting poly(ADP-ribose)-glycohydrolase (Parg), which reduced energy consumption and increased cell survival. Blocking the targeting of Parg by miR-383 prevented the protective effect of Hif1a deletion in macrophages on atherosclerosis and necrotic core formation in mice. CONCLUSIONS: Our findings unveil a new mechanism by which activation of HIF-1α in inflammatory macrophages increases necroptosis through microRNA-mediated ATP depletion, thus increasing atherosclerosis by necrotic core formation.


Assuntos
Aorta/metabolismo , Aterosclerose/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Necroptose , Trifosfato de Adenosina/metabolismo , Animais , Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Modelos Animais de Doenças , Metabolismo Energético , Regulação da Expressão Gênica , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/deficiência , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamação/genética , Inflamação/patologia , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , MicroRNAs/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
3.
Diabetes ; 66(12): 3072-3084, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28970282

RESUMO

A high-fat diet increases bacterial lipopolysaccharide (LPS) in the circulation and thereby stimulates glucagon-like peptide 1 (GLP-1)-mediated insulin secretion by upregulating interleukin-6 (IL-6). Although microRNA-155-5p (miR-155-5p), which increases IL-6 expression, is upregulated by LPS and hyperlipidemia and patients with familial hypercholesterolemia less frequently develop diabetes, the role of miR-155-5p in the islet stress response to hyperlipidemia is unclear. In this study, we demonstrate that hyperlipidemia-associated endotoxemia upregulates miR-155-5p in murine pancreatic ß-cells, which improved glucose metabolism and the adaptation of ß-cells to obesity-induced insulin resistance. This effect of miR-155-5p is because of suppression of v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B, which promotes ß-cell function through IL-6-induced GLP-1 production in α-cells. Moreover, reduced GLP-1 levels are associated with increased obesity progression, dyslipidemia, and atherosclerosis in hyperlipidemic Mir155 knockout mice. Hence, induction of miR-155-5p expression in ß-cells by hyperlipidemia-associated endotoxemia improves the adaptation of ß-cells to insulin resistance and represents a protective mechanism in the islet stress response.


Assuntos
Hiperlipidemias/genética , Células Secretoras de Insulina/fisiologia , Fator de Transcrição MafB/genética , MicroRNAs/fisiologia , Animais , Células Cultivadas , Endotoxemia/genética , Peptídeo 1 Semelhante ao Glucagon/sangue , Glucose/metabolismo , Insulina/biossíntese , Interleucina-6/genética , Camundongos , Camundongos Endogâmicos C57BL , Receptores de LDL/fisiologia
4.
J Cell Mol Med ; 21(8): 1523-1531, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28211187

RESUMO

Platelets play an important role in the pathogenesis of vascular remodelling after injury. Junctional adhesion molecule A (JAM-A) was recently described to regulate platelet activation. Specific deletion of JAM-A from platelets resulted in increased reactivity and in accelerated progression of atherosclerosis. The aim of this study was to investigate the specific contribution of platelet-derived JAM-A to neointima formation after vascular injury. Mice with or without platelet-specific (tr)JAM-A-deficiency in an apolipoprotein e (apoe-/- ) background underwent wire-induced injury of the common carotid artery. Ex vivo imaging by two-photon microscopy revealed increased platelet coverage at the site of injury in trJAM-A-deficient mice. Cell recruitment assays showed increased adhesion of monocytic cells to activated JAM-A-deficient platelets than to control platelets. Inhibition of αM ß2 or GPIbα, but not of CD62P, suppressed those differences. Up to 4 weeks after wire injury, intimal neoplasia and neointimal cellular content were analysed. Neointimal lesion area was increased in trJAM-A-/- apoe-/- mice and the lesions showed an increased macrophage accumulation and proliferating smooth muscle cells compared with trJAM-A+/+ apoe-/- littermates 2 weeks, but not 4 weeks after injury. Re-endothelialization was decreased in trJAM-A-/- apoe-/- mice compared with controls 2 weeks after injury, yet it was complete in both groups after 4 weeks. A platelet gain of function by deletion of JAM-A accelerates neointima formation only during earlier phases after vascular injury, through an increased recruitment of mononuclear cells. Thus, the contribution of platelets might become less important when neointima formation progresses to later stages.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/genética , Lesões das Artérias Carótidas/genética , Moléculas de Adesão Celular/genética , Hiperlipidemias/genética , Neointima/genética , Receptores de Superfície Celular/genética , Animais , Apolipoproteínas E/deficiência , Aterosclerose/complicações , Aterosclerose/metabolismo , Aterosclerose/patologia , Plaquetas/metabolismo , Plaquetas/patologia , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/complicações , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/patologia , Adesão Celular , Moléculas de Adesão Celular/deficiência , Feminino , Regulação da Expressão Gênica , Hiperlipidemias/complicações , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Monócitos/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Neointima/complicações , Neointima/metabolismo , Neointima/patologia , Receptores de Superfície Celular/deficiência , Transdução de Sinais , Remodelação Vascular/genética
5.
Hypertension ; 66(6): 1220-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26483345

RESUMO

Chemokines mediate monocyte adhesion to dysfunctional endothelial cells (ECs) and promote arterial inflammation during atherosclerosis. Hypoxia-inducible factor (HIF)-1α is expressed in various cell types of atherosclerotic lesions and is associated with lesional inflammation. However, the impact of endothelial HIF-1α in atherosclerosis is unclear. HIF-1α was detectable in the nucleus of ECs covering murine and human atherosclerotic lesions. To study the role of endothelial HIF-1α in atherosclerosis, deletion of the Hif1a gene was induced in ECs from apolipoprotein E knockout mice (EC-Hif1a(-/-)) by Tamoxifen injection. The formation of atherosclerotic lesions, the lesional macrophage accumulation, and the expression of CXCL1 in ECs were reduced after partial carotid ligation in EC-Hif1a(-/-) compared with control mice. Moreover, the lesion area and the lesional macrophage accumulation were decreased in the aortas of EC-Hif1a(-/-) mice compared with control mice during diet-induced atherosclerosis. In vitro, mildly oxidized low-density lipoprotein or lysophosphatidic acid 20:4 increased endothelial CXCL1 expression and monocyte adhesion by inducing HIF-1α expression. Moreover, endothelial Hif1a deficiency resulted in downregulation of miR-19a in atherosclerotic arteries determined by microRNA profiling. In vitro, HIF-1α-induced miR-19a expression mediated the upregulation of CXCL1 in mildly oxidized low-density lipoprotein-stimulated ECs. These results indicate that hyperlipidemia upregulates HIF-1α expression in ECs by mildly oxidized low-density lipoprotein-derived unsaturated lysophosphatidic acid. Endothelial HIF-1α promoted atherosclerosis by triggering miR-19a-mediated CXCL1 expression and monocyte adhesion, indicating that inhibition of the endothelial HIF-1α/miR-19a pathway may be a therapeutic option against atherosclerosis.


Assuntos
Aterosclerose/genética , Células Endoteliais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , MicroRNAs/genética , Monócitos/metabolismo , Animais , Aterosclerose/metabolismo , Western Blotting , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Células Endoteliais/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lipoproteínas LDL/farmacologia , Camundongos Knockout , Oligonucleotídeos Antissenso/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Circ Res ; 116(4): 587-99, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25472975

RESUMO

RATIONALE: Besides their essential role in hemostasis, platelets also have functions in inflammation. In platelets, junctional adhesion molecule (JAM)-A was previously identified as an inhibitor of integrin αIIbß3-mediated outside-in signaling and its genetic knockdown resulted in hyperreactivity. OBJECTIVE: This gain-of-function was specifically exploited to investigate the role of platelet hyperreactivity in plaque development. METHODS AND RESULTS: JAM-A-deficient platelets showed increased aggregation and cellular and sarcoma tyrosine-protein kinase activation. On αIIbß3 ligation, JAM-A was shown to be dephosphorylated, which could be prevented by protein tyrosine phosphatase nonreceptor type 1 inhibition. Mice with or without platelet-specific (tr)JAM-A-deficiency in an apolipoprotein e (apoe(-/-)) background were fed a high-fat diet. After ≤12 weeks of diet, trJAM-A(-/-)apoe-/- mice showed increased aortic plaque formation when compared with trJAM-A(+/+) apoe(-/-) controls, and these differences were most evident at early time points. At 2 weeks, the plaques of the trJAM-A(-/-) apoe(-/-) animals revealed increased macrophage, T cell, and smooth muscle cell content. Interestingly, plasma levels of chemokines CC chemokine ligand 5 and CXC-chemokine ligand 4 were increased in the trJAM-A(-/-) apoe(-/-)mice, and JAM-A-deficient platelets showed increased binding to monocytes and neutrophils. Whole-blood perfusion experiments and intravital microscopy revealed increased recruitment of platelets and monocytes to the inflamed endothelium in blood of trJAM-A(-/-) apoe(-/-)mice. Notably, these proinflammatory effects of JAM-A-deficient platelets could be abolished by the inhibition of αIIbß3 signaling in vitro. CONCLUSIONS: Deletion of JAM-A causes a gain-of-function in platelets, with lower activation thresholds and increased inflammatory activities. This leads to an increase of plaque formation, particularly in early stages of the disease.


Assuntos
Aorta/metabolismo , Doenças da Aorta/etiologia , Aterosclerose/etiologia , Plaquetas/metabolismo , Doenças das Artérias Carótidas/etiologia , Moléculas de Adesão Celular/deficiência , Hiperlipidemias/complicações , Agregação Plaquetária , Receptores de Superfície Celular/deficiência , Animais , Aorta/patologia , Doenças da Aorta/sangue , Doenças da Aorta/genética , Doenças da Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/patologia , Doenças das Artérias Carótidas/sangue , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Adesão Celular , Moléculas de Adesão Celular/sangue , Moléculas de Adesão Celular/genética , Células Cultivadas , Quimiotaxia de Leucócito , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Feminino , Genótipo , Humanos , Hiperlipidemias/sangue , Hiperlipidemias/genética , Mediadores da Inflamação/metabolismo , Leucócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Placa Aterosclerótica , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Receptores de Superfície Celular/sangue , Receptores de Superfície Celular/genética , Trombose/sangue , Trombose/etiologia , Fatores de Tempo , Quinases da Família src/metabolismo
7.
Thromb Haemost ; 110(6): 1267-77, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24114205

RESUMO

The chemokine receptor CCR6 is expressed by various cell subsets implicated in atherogenesis, such as monocytes, Th17 and regulatory T cells. In order to further define the role of CCR6 in atherosclerosis, CCR6-deficient (Ccr6-/-) mice were crossed with low-density lipoprotein receptor-deficient (Ldlr-/-) mice to generate atherosclerosis-prone mice deficient in CCR6. Compared to Ldlr-/- controls, atherosclerotic burden in the aortic sinus and aorta were reduced in Ccr6-/-Ldlr-/- mice fed a high fat diet, associated with a profound depression in lesional macrophage accumulation. Local and systemic distributions of T cells, including frequencies of Th1, Th17 and regulatory T cells were unaltered. In contrast, circulating counts of both Gr-1(high) and Gr1(low) monocytes were reduced in Ccr6-/-Ldlr-/- mice. Moreover, CCR6 was revealed to promote monocyte adhesion to inflamed endothelium in vitro and leukocyte adhesion to carotid arteries in vivo. Finally, CCR6 selectively recruited monocytes but not T cells in an acute inflammatory air pouch model. We here show that CCR6 functions on multiple levels and regulates the mobilisation, adhesion and recruitment of monocytes/macrophages to the inflamed vessel, thereby promoting atherosclerosis, but is dispensable for hypercholesterolaemia-associated adaptive immune priming. Targeting CCR6 or its ligand CCL20 may therefore be a promising therapeutic strategy to alleviate atherosclerosis.


Assuntos
Aterosclerose/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Receptores CCR6/metabolismo , Linfócitos T/imunologia , Animais , Adesão Celular/genética , Movimento Celular/genética , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Suscetibilidade a Doenças , Inflamação/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR6/genética , Receptores CCR6/imunologia , Receptores de Superfície Celular/metabolismo , Receptores de LDL/genética
8.
Biochem Pharmacol ; 86(2): 279-85, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23665353

RESUMO

Two synthetic LXR agonists were recently reported to inhibit collagen-induced platelet aggregation and thrombus formation in mice. We therefore studied whether also natural LXR agonists inhibit human platelet activation and whether they can be fluorescence-labelled preserving their bioactivity for LXR-related functional imaging. The natural LXR agonist 22(R)-OH-cholesterol - but not its stereoisomer 22(S)-OH-cholesterol - inhibited collagen induced platelet shape change and aggregation similar to synthetic LXR agonists in a concentration- and time-dependent manner. First exposure to 22(S)-OH-cholesterol prevented the subsequent inhibition of platelets by 22(R)-OH-cholesterol but not vice versa. 22(R)- and 22(S)-OH-cholesterol could be fluorescence-labelled as 22(R)- and 22(S)-OH-cholesteryl-3-dodecanoic-3-BODIPY esters with high yield and purity using the Steglich acylation. Labelled 22(R)- and 22(S)-OH-cholesterol esters retained the stereo specific bioactivity of their parent compounds, were metabolically stable and not cytotoxic at LXR agonistic concentrations. Live staining with labelled 22(R)- or 22(S)-OH-cholesterol esters demonstrated stereo specific inhibition of platelet spreading and chiral handling by macrophages that reflect LXR activation. The rapid inhibition of platelet reactivity to collagen by natural and pharmacologic LXR agonists offers a mechanism that could attenuate platelet activation by denuded plaques that expose collagen and LXR agonistic oxysterols. Stable fluorescence labelled 22(R)- and 22(S)-OH-cholesterol analogues with preserved stereo specific bioactivity and staining characteristics provide valuable tools for LXR-related functional imaging in pathophysiologic studies, for binding assays and for LXR-targeted drug development.


Assuntos
Hidroxicolesteróis/farmacologia , Macrófagos/efeitos dos fármacos , Receptores Nucleares Órfãos/agonistas , Ativação Plaquetária/efeitos dos fármacos , Acilação , Corantes Fluorescentes , Humanos , Cinética , Receptores X do Fígado , Macrófagos/metabolismo , Microscopia de Fluorescência , Estereoisomerismo
10.
Cell Metab ; 13(5): 592-600, 2011 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-21531341

RESUMO

Oxidatively modified low-density lipoprotein (oxLDL) plays a key role in the initiation of atherosclerosis by increasing monocyte adhesion. The mechanism that is responsible for the oxLDL-induced atherogenic monocyte recruitment in vivo, however, still remains unknown. Oxidation of LDL generates lysophosphatidylcholine, which is the main substrate for the lysophosphatidic acid (LPA) generating enzyme autotaxin. We show that oxLDL requires endothelial LPA receptors and autotaxin to elicit CXCL1-dependent arterial monocyte adhesion. Unsaturated LPA releases endothelial CXCL1, which is subsequently immobilized on the cell surface and mediates LPA-induced monocyte adhesion. Local and systemic application of LPA accelerates the progression of atherosclerosis in mice. Blocking the LPA receptors LPA(1) and LPA(3) reduced hyperlipidemia-induced arterial leukocyte arrest and atherosclerosis in the presence of functional CXCL1. Thus, atherogenic monocyte recruitment mediated by hyperlipidemia and modified LDL crucially depends on LPA, which triggers endothelial deposition of CXCL1, revealing LPA signaling as a target for cardiovascular disease treatments.


Assuntos
Aterosclerose/induzido quimicamente , Aterosclerose/metabolismo , Quimiocina CXCL1/metabolismo , Endotélio Vascular/metabolismo , Hiperlipidemias , Lipoproteínas LDL/metabolismo , Lisofosfolipídeos/farmacologia , Animais , Apolipoproteínas E/fisiologia , Artérias Carótidas/citologia , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/metabolismo , Células Cultivadas , Dieta Aterogênica , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , RNA Interferente Pequeno/genética , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo
11.
Circ Res ; 107(1): 96-105, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20360252

RESUMO

RATIONALE: The chemokine CXCL12 (CXC motif ligand 12) and its receptor CXCR 4 (CXC motif receptor 4) direct the recruitment of smooth muscle progenitor cells (SPCs) in neointima formation after vascular injury. Lysophosphatidic acid (LPA) induces CXCL12 and neointimal accumulation of smooth muscle cells (SMCs) in uninjured arteries. Thus, we hypothesize that LPA may regulate CXCL12-mediated vascular remodelling. OBJECTIVES: We evaluated the role of LPA receptors in initiating CXCL12-dependent vascular repair by SPCs. METHODS AND RESULTS: Wire-induced carotid injury was performed in apolipoprotein E(-/-) mice on western-type diet. LPA receptor expression was studied by immunostaining and quantitative RT-PCR. LPA receptors LPA(1) and LPA(3) were detected in the media of uninjured arteries and in the injury-induced neointima. LPA(3) mRNA was upregulated and LPA(1) mRNA downregulated at one week after injury. The LPA(1/3) antagonist Ki16425 inhibited neointima formation by 71% and reduced both relative neointimal SMCs and the macrophage content. Additionally, neointimal hypoxia-inducible factor-1alpha and CXCL12 expression, the injury-induced peripheral stem cell antigen-1 (Sca-1)(+)/Lin(-) SPC mobilization, and the neointimal recruitment of Sca-1(+)SMCs were inhibited by Ki16425. In wild type mice, LPA20:4 increased CXCL12 and hypoxia-inducible factor-1alpha expression in carotid arteries as early as 1 day following short-term endoluminal incubation. LPA20:4-induced SPC mobilization and neointima formation were blocked by Ki16425, LPA(1)- and LPA(3)-specific small interfering (si)RNA, and the CXCR4 antagonist POL5551. Ki16425 reduced LPA20:4-mediated neointimal recruitment of SPC as demonstrated by 2-photon microscopy in bone marrow chimeric mice after repopulation with SM22-LacZ transgenic, hematopoietic cells. Moreover, POL5551 decreased the neointimal accumulation of CXCR4(+) SMCs. CONCLUSIONS: LPA(1) and LPA(3) promote neointima formation through activation of CXCL12-mediated mobilization and recruitment of SPCs.


Assuntos
Movimento Celular/fisiologia , Quimiocina CXCL12/fisiologia , Miócitos de Músculo Liso/fisiologia , Receptores de Ácidos Lisofosfatídicos/fisiologia , Células-Tronco/fisiologia , Túnica Íntima/fisiologia , Animais , Artéria Carótida Primitiva/patologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/citologia , Células-Tronco/citologia , Túnica Íntima/citologia
12.
Arterioscler Thromb Vasc Biol ; 27(12): 2540-7, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17932320

RESUMO

OBJECTIVE: Hypoxia-inducible factor (HIF)-1alpha is the regulatory subunit of a transcriptional complex, which controls the recruitment of multipotent progenitor cells and tissue repair in ischemic tissue by inducing stromal cell-derived factor (SDF)-1alpha expression. Because HIF-1alpha can be activated under normoxic conditions in smooth muscle cells (SMCs) by platelet products, we investigated the role of HIF-1alpha in SDF-1alpha-mediated neointima formation after vascular injury. METHODS AND RESULTS: Wire-induced injury of the left carotid artery was performed in apolipoprotein E-deficient mice. HIF-1alpha expression was increased in the media as early as 1 day after injury, predominantly in SMCs. Nuclear translocation of HIF-1alpha and colocalization with SDF-1alpha was detected in neointimal cells after 2 weeks. HIF-1alpha mRNA expression was induced at 6 hours after injury as determined by real-time RT-PCR. Inhibition of HIF-1alpha expression by local application of HIF-1alpha-siRNA reduced the neointimal area by 49% and significantly decreased the neointimal SMCs content compared with control-siRNA. HIF-1alpha and SDF-1alpha expression were clearly diminished in neointimal cells of HIF-1alpha-siRNA treated arteries. CONCLUSIONS: HIF-1alpha expression is directly involved in neointimal formation after vascular injury and mediates the upregulation of SDF-1alpha, which may affect the stem cell-based repair of injured arteries.


Assuntos
Apolipoproteínas E/metabolismo , Lesões das Artérias Carótidas/metabolismo , Artéria Carótida Primitiva/metabolismo , Quimiocina CXCL12/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Túnica Íntima/metabolismo , Túnica Média/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/patologia , Movimento Celular , Modelos Animais de Doenças , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Células-Tronco/patologia , Fatores de Tempo , Túnica Íntima/patologia , Túnica Média/patologia , Regulação para Cima
13.
Trends Cardiovasc Med ; 16(4): 103-8, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16713531

RESUMO

Circulating smooth muscle progenitor cells have been identified as a source for neointimal smooth muscle cells after various types of injuries to the vessel wall contributing to neointimal hyperplasia, implying a fundamental role of these progenitor cells in the vascular response to injury. Recent studies have provided insight into the molecular mechanisms of mobilization and local recruitment of smooth muscle progenitor cells. The CXC chemokine SDF-1alpha and its receptor CXCR4 have been identified as the central signaling axis regulating the homing of smooth muscle progenitor cells into the injured vessel wall. This review discusses the unique biologic functions of this chemokine and its contribution to stem-cell-based vascular repair and disease.


Assuntos
Quimiocinas CXC/farmacologia , Transplante de Células-Tronco/métodos , Células-Tronco/efeitos dos fármacos , Doenças Vasculares/cirurgia , Animais , Quimiocina CXCL12 , Humanos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Resultado do Tratamento , Doenças Vasculares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...