Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Res Methods ; 56(1): 290-300, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36595180

RESUMO

Interval timing refers to the ability to perceive and remember intervals in the seconds to minutes range. Our contemporary understanding of interval timing is derived from relatively small-scale, isolated studies that investigate a limited range of intervals with a small sample size, usually based on a single task. Consequently, the conclusions drawn from individual studies are not readily generalizable to other tasks, conditions, and task parameters. The current paper presents a live database that presents raw data from interval timing studies (currently composed of 68 datasets from eight different tasks incorporating various interval and temporal order judgments) with an online graphical user interface to easily select, compile, and download the data organized in a standard format. The Timing Database aims to promote and cultivate key and novel analyses of our timing ability by making published and future datasets accessible as open-source resources for the entire research community. In the current paper, we showcase the use of the database by testing various core ideas based on data compiled across studies (i.e., temporal accuracy, scalar property, location of the point of subjective equality, malleability of timing precision). The Timing Database will serve as the repository for interval timing studies through the submission of new datasets.


Assuntos
Percepção do Tempo , Humanos , Bases de Dados Factuais , Fatores de Tempo
2.
Atten Percept Psychophys ; 81(8): 2902-2916, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31165452

RESUMO

The perception of quantities has been suggested to rely on shared, magnitude-based representational systems that preserve metric properties. As such, different quantifiable dimensions that can characterize any given stimulus (e.g., size, speed, or numerosity) have been shown to modulate the perceived duration of these stimuli-a finding that has been attributed to cross-modal interaction among the quantity representations. However, these results are typically based on the isolated effects of a single stimulus dimension, leaving their potential combined effects uncharted. In the present study we aimed to investigate the joint effects of numerical magnitude and physical size on perceived time. In four complementary experiments, participants categorized six durations as "short" or "long," which were presented through combinations of Hindu-Arabic numerals in three font sizes, as well as with simple shapes (rectangles) and unfamiliar symbols (Klingon letters), the sizes of which corresponded to the font sizes of the Hindu-Arabic numerals. Our results showed temporal underestimation for the smallest numeral in the set (3), with no effects of font size on perceived duration. The perceived durations were longest for the physically smallest geometric stimuli (i.e., a rectangle), and the font size of symbol-like stimuli (i.e., Klingon letters) was not found to have an effect on perceived time. Finally, presenting only one numeral (6) instead of the rectangle once again eliminated the relationship between physical size and perceived time, suggesting an overshadowing of physical-size-based influences on temporal choice behavior, presumably by perceived symbolism. Our results point at the complex nature of the interaction between different magnitude representations.


Assuntos
Ilusões/fisiologia , Ilusões/psicologia , Conceitos Matemáticos , Estimulação Luminosa/métodos , Simbolismo , Percepção do Tempo/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
3.
Front Hum Neurosci ; 13: 58, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30894807

RESUMO

An acoustic stimulus elicits an electroencephalographic response called auditory event-related potential (ERP). When some members of a stream of standard auditory stimuli are replaced randomly by a deviant stimulus and this stream is presented to a subject who ignores the stimuli, two different ERPs to deviant and standard stimuli are recorded. If the ERP to standard stimuli is subtracted from the ERP to deviant stimuli, the difference potential (DP) waveform typically exhibits a series of negative-positive-negative deflections called mismatch negativity (MMN), P3a, and reorienting negativity (RON), which are associated with pre-attentive change detection, involuntary attention switching, and reorienting of attention, respectively. The aim of the present study was to investigate how these pre-attentive processes are affected if the change occurs earlier than its usual timing implied by isochronous standard stimuli. In the MMN paradigm employed, 15% of the standards were randomly replaced by deviant stimuli which differed either in their pitch, their earlier onset time, or in both. Event-related responses to these three deviants [timely pitch change (RTP), earlier onset (REO), earlier pitch change (REP)] and to standards (RS) were recorded from 10 reading subjects. To maintain identical stimulation histories for the responses subtracted from each other, "deviant-standard" difference potentials (DP) for "timely" and "early" pitch deviances were derived as follows: DPTP = RTP - RS and DPEP = REP - REO. Interestingly, the MMN components of the DPs to timely and early pitch deviances had similar amplitudes, indicating that regularity of stimulus timing does not provide any benefit for the pre-attentive auditory change detection mechanism. However, different scalp current density (SCD) dynamics of the MMN/P3a complexes, elicited by timely and early pitch deviances, suggested that an auditory change in a stimulus occurring earlier-than-usual initiates a faster and more effective call-for-attention and causes stronger attention switching than a timely change. SCD results also indicated that the temporal, frontal, and parietal MMN components are simultaneously present rather than emerging sequentially in time, supporting the MMN models based on parallel deviance processing in the respective cortices. Similarity of the RONs to timely and early pitch deviances indicated that reorienting of attention is of the same strength in two cases.

4.
Front Psychol ; 9: 2565, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627109

RESUMO

The physical properties of events are known to modulate perceived time. This study tested the effect of different quantitative (walking speed) and qualitative (walking-forward vs. walking-backward) features of observed motion on time perception in three complementary experiments. Participants were tested in the temporal discrimination (bisection) task, in which they were asked to categorize durations of walking animations as "short" or "long." We predicted the faster observed walking to speed up temporal integration and thereby to shift the point of subjective equality leftward, and this effect to increase monotonically with increasing walking speed. To this end, we tested participants with two different ranges of walking speeds in Experiment 1 and 2 and observed a parametric effect of walking speed on perceived time irrespective of the direction of walking (forward vs. rewound forward walking). Experiment 3 contained a more plausible backward walking animation compared to the rewound walking animation used in Experiments 1 and 2 (as validated based on independent subjective ratings). The effect of walking-speed and the lack of the effect of walking direction on perceived time were replicated in Experiment 3. Our results suggest a strong link between the speed but not the direction of perceived biological motion and subjective time.

5.
Atten Percept Psychophys ; 78(8): 2690-2707, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27527372

RESUMO

Stimulus properties are known to affect duration judgments. In this study, we tested the effect of motion coherence levels in randomly moving dots on the perceived duration of these stimuli. In Experiments 1 and 2 we tested participants on a temporal reproduction task, using stimuli with varying degrees of motion coherence as the to-be-timed stimuli. Our results in both experiments showed that increasing motion coherence from the encoded (i.e. the first) to the reproduced (i.e. the second) stimulus leads to longer reproduction times. These effects were primarily additive in nature, and their magnitude increased with the difference between the coherence levels in the encoding versus reproduction (decoding) phases. This effect was not mirrored when there was a decrease in motion coherence. Experiment 3 tested if the differential number of exploratory saccadic eye-movements during encoding and reproduction predicted these effects. The behavioral findings of Experiment 1 and 2 were replicated in the third experiment, and the change in the number of eye movements from encoding to reproduction predicted the reproduction time when there was an increase in motion coherence. These results are explained by the effect of attention on the latency to initiate temporal integration that is only manifested when there is an increase in the level of motion coherence.


Assuntos
Percepção de Movimento/fisiologia , Percepção do Tempo/fisiologia , Adolescente , Adulto , Análise de Variância , Atenção/fisiologia , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Movimentos Sacádicos/fisiologia , Fatores de Tempo , Adulto Jovem
6.
Front Neurosci ; 8: 248, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25177265

RESUMO

Perceptual decision making has been successfully modeled as a process of evidence accumulation up to a threshold. In order to maximize the rewards earned for correct responses in tasks with response deadlines, participants should collapse decision thresholds dynamically during each trial so that a decision is reached before the deadline. This strategy ensures on-time responding, though at the cost of reduced accuracy, since slower decisions are based on lower thresholds and less net evidence later in a trial (compared to a constant threshold). Frazier and Yu (2008) showed that the normative rate of threshold reduction depends on deadline delays and on participants' uncertainty about these delays. Participants should start collapsing decision thresholds earlier when making decisions under shorter deadlines (for a given level of timing uncertainty) or when timing uncertainty is higher (for a given deadline). We tested these predictions using human participants in a random dot motion discrimination task. Each participant was tested in free-response, short deadline (800 ms), and long deadline conditions (1000 ms). Contrary to optimal-performance predictions, the resulting empirical function relating accuracy to response time (RT) in deadline conditions did not decline to chance level near the deadline; nor did the slight decline we typically observed relate to measures of endogenous timing uncertainty. Further, although this function did decline slightly with increasing RT, the decline was explainable by the best-fitting parameterization of Ratcliff's diffusion model (Ratcliff, 1978), whose parameters are constant within trials. Our findings suggest that at the very least, typical decision durations are too short for participants to adapt decision parameters within trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...