Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893334

RESUMO

Thiazolin-4-ones and their derivatives represent important heterocyclic scaffolds with various applications in medicinal chemistry. For that reason, the synthesis of two 5-substituted thiazolidin-4-one derivatives was performed. Their structure assignment was conducted by NMR experiments (2D-COSY, 2D-NOESY, 2D-HSQC and 2D-HMBC) and conformational analysis was conducted through Density Functional Theory calculations and 2D-NOESY. Conformational analysis showed that these two molecules adopt exo conformation. Their global minimum structures have two double bonds (C=N, C=C) in Z conformation and the third double (C=N) in E. Our DFT results are in agreement with the 2D-NMR measurements. Furthermore, the reaction isomerization paths were studied via DFT to check the stability of the conformers. Finally, some potential targets were found through the SwissADME platform and docking experiments were performed. Both compounds bind strongly to five macromolecules (triazoloquinazolines, mglur3, Jak3, Danio rerio HDAC6 CD2, acetylcholinesterase) and via SwissADME it was found that these two molecules obey Lipinski's Rule of Five.


Assuntos
Conformação Molecular , Simulação de Acoplamento Molecular , Tiazolidinas , Tiazolidinas/química , Tiazolidinas/síntese química , Isomerismo , Animais , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Peixe-Zebra , Espectroscopia de Ressonância Magnética , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/metabolismo , Janus Quinase 3/química , Estrutura Molecular
2.
ACS Omega ; 8(31): 28783-28796, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576686

RESUMO

A series of 32 thiourea-based urease inhibitors were synthesized and evaluated against native bacterial enzyme and whole cells of Sporosarcina pasteurii and Proteus mirabilis strains. The proposed inhibitors represented structurally diverse thiosemicarbazones and thiocarbohydrazones, benzyl-substituted thiazolyl thioureas, 1H-pyrazole-1-carbothioamides, and dihydropirimidine-2(1H)-thiones. Kinetic characteristics with purified S. pasteurii enzyme determined low micromolar inhibitors within each structural group. (E)-2-(1-Phenylethylidene)hydrazine-1-carbothioamide 19 (Ki = 0.39 ± 0.01 µM), (E)-2-(4-methylbenzylidene)hydrazine-1-carbothioamide 16 (Ki = 0.99 ± 0.04 µM), and N'-((1E,2E)-1,3-diphenylallylidene)hydrazinecarbothiohydrazide 29 (Ki = 2.23 ± 0.19 µM) were used in modeling studies that revealed sulfur ion coordination of the active site nickel ion and hydrogen bonds between the amide group and the side chain of Asp363 and Ala366 carbonyl moiety. Whole-cell studies proved the activity of compounds in Gram-positive and Gram-negative microorganisms. Ureolysis control observed in P. mirabilis PCM 543 (e.g., IC50 = 304 ± 14 µM for 1-benzyl-3-(4-(4-hydroxyphenyl)thiazol-2-yl)thiourea 52) is a valuable achievement, as urease is recognized as a major virulence factor of this urinary tract pathogen.

3.
ACS Omega ; 8(13): 11966-11977, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033811

RESUMO

The potential of the 4,6-diphenyl-3,4-dihydropyrimidine-2(1H)-thione (abbreviated as KKII5) and (E)-N'-benzylidenehydrazinecarbothiohydrazide (abbreviated as DKI5) compounds as possible drug leads is investigated. KKII5 and DKI5 are synthesized in high yield of up to 97%. Their structure, binding in the active site of the LOX-1 enzyme, and their toxicity are studied via joint experimental and computational methodologies. Specifically, the structure assignment and conformational analysis were achieved by applying homonuclear and heteronuclear 2D nuclear magnetic resonance (NMR) spectroscopy (2D-COSY, 2D-NOESY, 2D-HSQC, and 2D-HMBC) and density functional theory (DFT). The obtained DFT lowest energy conformers were in agreement with the NOE correlations observed in the 2D-NOESY spectra. Additionally, docking and molecular dynamics simulations were performed to discover their ability to bind and remain stabile in the active site of the LOX-1 enzyme. These in silico experiments and DFT calculations indicated favorable binding for the enzyme under study. The strongest binding energy, -9.60 kcal/mol, was observed for dihydropyrimidinethione KKII5 in the active site of LOX-1. ADMET calculations showed that the two molecules lack major toxicities and could serve as possible drug leads. The redox potential of the active center of LOX-1 with the binding molecules was calculated via DFT methodology. The results showed a significantly smaller energy attachment of 2.8 eV with KKII5 binding in comparison to DKI5. Thus, KKII5 enhanced the ability of the active center to receive electrons compared to DKI5. This is related to the stronger binding interaction of KKII5 relative to that of DK15 to LOX-1. The two very potent LOX-1 inhibitors exerted IC50 19 µΜ (KKII5) and 22.5 µΜ (DKI5). Furthermore, they both strongly inhibit lipid peroxidation, namely, 98% for KKII5 and 94% for DKI5.

4.
Molecules ; 27(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35889421

RESUMO

The structure assignment and conformational analysis of the thiosemicarbazones, DKI21 and DKI24, were performed through homonuclear and heteronuclear 2D Nuclear Magnetic Resonance (NMR) spectroscopy (2D-COSY, 2D-NOESY, 2D-ROESY, 2D-HSQC, and 2D-HMBC) and quantum mechanics (QM) calculations, using Functional Density Theory (DFT). In addition, utilizing a combination of 2D-NOESY and 2D-ROESY spectra an exo structure was established for both of the analogs. This experimental results were confirmed by theoretical mechanistic studies, as the lowest minima conformations derived through DFT calculations were compatible with the spatial correlations observed in the 2D-NOESY and 2D-ROESY spectra. Finally, molecular binding experiments were performed to detect the potential targets for DKI21 and DKI24, derived from SwissAdme. In silico molecular binding experiments showed favorable binding energy values for the most of the enzymes studied. The ADMET calculations, using the preADMET and pKCSm software, showed that the two molecules appear as possible drug leads.


Assuntos
Tiossemicarbazonas , Espectroscopia de Ressonância Magnética , Conformação Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...