Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 308(Pt 3): 136406, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115472

RESUMO

In this work, MoS2/Mg(OH)2/BiVO4 ternary hybrid photocatalyst was synthesized by sonicated precursor mixture to the hydrothermal procedure to generate a highly efficient solar light-induced and simply recyclable photocatalyst. The obtained hybrid was confirmed by the characteristic peaks of MoS2/Mg(OH)2/BiVO4 observed in X-ray diffraction (14.31°/18.62°/28.18°), infrared spectra (465/445/679 cm-1), ultraviolet-visible spectra (636/683/639 nm) studies, and the band-gap narrowing (2.62/2.44/2.25 eV). The morphological structure of MoS2 (rod), Mg(OH)2 (particles), and BiVO4 (random aggregates) were turned into MoS2/Mg(OH)2/BiVO4 hierarchical nanosheets that coexisted with particles. The photodegradation experiments of the photocatalysts were assessed by using Congo Red (CR), Malachite Green (MG) and Textile Industry Effluent (TIE) as the model pollutant under direct sunlight. The photocatalytic efficiency of the hybrids was noticeably 2.1 to 2.3 times higher than that of the individual components. Photocurrent response test indicate that MoS2/Mg(OH)2/BiVO4 ternary hybrid nanocomposites photocatalysts had a more effective electron/hole pair separation than individual and binary composite photocatalysts. The mechanism of photodegradation of MoS2/Mg(OH)2/BiVO4ternary hybrid photocatalysts was investigated and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...