Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Immunol ; 399-400: 104823, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38520831

RESUMO

AAV-mediated gene transfer is a promising platform still plagued by potential host-derived, antagonistic immune responses to therapeutic components. CpG-mediated TLR9 stimulation activates innate immune cells and leads to cognate T cell activation and suppression of transgene expression. Here, we demonstrate that CpG depletion increased expression of an antibody transgene product by 2-3-fold as early as 24 h post-vector administration in mice. No significant differences were noted in anti-transgene product/ anti-AAV capsid antibody production or cytotoxic gene induction. Instead, CpG depletion significantly reduced the presence of a pDC-like myeloid cell population, which was able to directly bind the antibody transgene product via Fc-FcγR interactions. Thus, we extend the mechanisms of TLR9-mediated antagonism of transgene expression in AAV gene therapy to include the actions of a previously unreported pDC-like cell population.


Assuntos
Células Dendríticas , Dependovirus , Terapia Genética , Vetores Genéticos , Camundongos Endogâmicos C57BL , Receptor Toll-Like 9 , Transgenes , Animais , Células Dendríticas/imunologia , Dependovirus/genética , Camundongos , Terapia Genética/métodos , Receptor Toll-Like 9/imunologia , Ilhas de CpG/genética , Ilhas de CpG/imunologia , Receptores de IgG/imunologia , Receptores de IgG/genética , Receptores de IgG/metabolismo
2.
J Virol ; 97(11): e0116323, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37843374

RESUMO

IMPORTANCE: The use of adeno-associated viruses (AAVs) as gene delivery vectors has vast potential for the treatment of many severe human diseases. Over one hundred naturally existing AAV capsid variants have been described and classified into phylogenetic clades based on their sequences. AAV8, AAV9, AAVrh.10, and other intensively studied capsids have been propelled into pre-clinical and clinical use, and more recently, marketed products; however, less-studied capsids may also have desirable properties (e.g., potency differences, tissue tropism, reduced immunogenicity, etc.) that have yet to be thoroughly described. These data will help build a broader structure-function knowledge base in the field, present capsid engineering opportunities, and enable the use of novel capsids with unique properties.


Assuntos
Dependovirus , Terapia Genética , Vetores Genéticos , Humanos , Capsídeo , Proteínas do Capsídeo/genética , Dependovirus/genética , Vetores Genéticos/genética , Filogenia , Distribuição Tecidual
3.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293546

RESUMO

Adeno-associated virus (AAV) vector-based therapies can effectively correct some disease pathology in murine models with mucopolysaccharidoses. However, immunogenicity can limit therapeutic effect as immune responses target capsid proteins, transduced cells, and gene therapy products, ultimately resulting in loss of enzyme activity. Inherent differences in male versus female immune response can significantly impact AAV gene transfer. We aim to investigate sex differences in the immune response to AAV gene therapies in mice with mucopolysaccharidosis IVA (MPS IVA). MPS IVA mice, treated with different AAV vectors expressing human N-acetylgalactosamine 6-sulfate sulfatase (GALNS), demonstrated a more robust antibody response in female mice resulting in subsequent decreased GALNS enzyme activity and less therapeutic efficacy in tissue pathology relative to male mice. Under thyroxine-binding globulin promoter, neutralizing antibody titers in female mice were approximately 4.6-fold higher than in male mice, with GALNS enzyme activity levels approximately 6.8-fold lower. Overall, male mice treated with AAV-based gene therapy showed pathological improvement in the femur and tibial growth plates, ligaments, and articular cartilage as determined by contrasting differences in pathology scores compared to females. Cardiac histology revealed a failure to normalize vacuolation in females, in contrast, to complete correction in male mice. These findings promote the need for further determination of sex-based differences in response to AAV-mediated gene therapy related to developing treatments for MPS IVA.


Assuntos
Condroitina Sulfatases , Mucopolissacaridoses , Mucopolissacaridose IV , Humanos , Feminino , Camundongos , Masculino , Animais , Globulina de Ligação a Tiroxina/genética , Globulina de Ligação a Tiroxina/metabolismo , Modelos Animais de Doenças , Caracteres Sexuais , Proteínas do Capsídeo/genética , Terapia Genética , Anticorpos Neutralizantes/uso terapêutico , Expressão Gênica , Condroitina Sulfatases/genética
4.
Immunology ; 166(3): 341-356, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35404483

RESUMO

Defective immune regulation has been recognized in type 1 diabetes (T1D). Immune regulatory T cell check-point receptors, which are generally upregulated on activated T cells, have been the molecules of attention as therapeutic targets for enhancing immune response in tumour therapy. Here, we show that pancreatic ß-cell antigen (BcAg) presentation by engineered tolerogenic dendritic cells (tDCs) that express CTLA4 selective ligand (B7.1wa) or a combination of CTLA4, PD1 and BTLA selective ligands (B7.1wa, PD-L1 and HVEM-CRD1 respectively; multiligand-DCs) causes an increase in regulatory cytokine and T cell (Treg) responses and suppression of the effector T cell function as compared with engineered control-DCs. Non-obese diabetic mice treated with BcAg-pulsed CTLA4-ligand-DCs and multiligand-DCs at pre-diabetic and early-hyperglycaemic stages showed significantly lower degree of insulitis, higher frequencies of insulin-positive islets, profound delay in and reversal of hyperglycaemia for a significant duration. Immune cells from the tDC-treated mice not only produced lower amounts of IFNγ and higher amounts of IL10 and TGFß1 upon BcAg challenge, but also failed to induce hyperglycaemia upon adoptive transfer. While both CTLA4-ligand-DCs and multiligand-DCs were effective in inducing tolerance, multiligand-DC treatment produced an overall higher suppressive effect on effector T cell function and disease outcome. These studies show that enhanced engagement of T cell checkpoint receptors during BcAg presentation can modulate T cell function and suppress autoimmunity and progression of the disease in T1D.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hiperglicemia , Animais , Apresentação de Antígeno , Antígeno CTLA-4/metabolismo , Células Dendríticas , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/metabolismo , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Tolerância Imunológica , Ligantes , Camundongos , Receptores Imunológicos , Linfócitos T Reguladores
5.
Curr Gene Ther ; 22(3): 262-276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34530708

RESUMO

BACKGROUND: GM2 gangliosidosis is a neurodegenerative, lysosomal storage disease caused by the deficiency of ß-hexosaminidase A enzyme (Hex A), an α/ß-subunit heterodimer. A novel variant of the human hexosaminidase α-subunit, coded by HEX M, has previously been shown to form a stable homodimer, Hex M, that hydrolyzes GM2 gangliosides (GM2) in vivo. MATERIALS & METHODS: The current study assessed the efficacy of intravenous (IV) delivery of a self-complementary adeno-associated virus serotype 9 (scAAV9) vector incorporating the HEXM transgene, scAAV9/HEXM, including the outcomes based on the dosages provided to the Sandhoff (SD) mice. Six-week-old SD mice were injected with either 2.5E+12 vector genomes (low dose, LD) or 1.0E+13 vg (high dose, HD). We hypothesized that when examining the dosage comparison for scAAV9/HEXM in adult SD mice, the HD group would have more beneficial outcomes than the LD cohort. Assessments included survival, behavioral outcomes, vector biodistribution, and enzyme activity within the central nervous system. RESULTS: Toxicity was observed in the HD cohort, with 8 of 14 mice dying within one month of the injection. As compared to untreated SD mice, which have typical survival of 16 weeks, the LD cohort and the remaining HD mice had a significant survival benefit with an average/median survival of 40.6/34.5 and 55.9/56.7 weeks, respectively. Significant behavioral, biochemical and molecular benefits were also observed. The second aim of the study was to investigate the effects of IV mannitol infusions on the biodistribution of the LD scAAV9/HEXM vector and the survival of the SD mice. Increases in both the biodistribution of the vector as well as the survival benefit (average/median of 41.6/49.3 weeks) were observed. CONCLUSION: These results demonstrate the potential benefit and critical limitations of the treatment of GM2 gangliosidosis using IV delivered AAV vectors.


Assuntos
Gangliosidoses GM2 , Doença de Sandhoff , Animais , Hexosaminidases , Humanos , Camundongos , Doença de Sandhoff/genética , Doença de Sandhoff/terapia , Distribuição Tecidual , beta-N-Acetil-Hexosaminidases/genética
6.
Mol Ther Methods Clin Dev ; 22: 196-209, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34485605

RESUMO

Fragile X syndrome (FXS), a neurodevelopmental disorder with no known cure, is caused by a lack of expression of the fragile X mental retardation protein (FMRP). As a single-gene disorder, FXS is an excellent candidate for viral-vector-based gene therapy, although that is complicated by the existence of multiple isoforms of FMRP, whose individual cellular functions are unknown. We studied the effects of rat and mouse orthologs of human isoform 17, a major expressed isoform of FMRP. Injection of neonatal Fmr1 knockout rats and mice with adeno-associated viral vectors (AAV9 serotype) under the control of an MeCP2 mini-promoter resulted in widespread distribution of the FMRP transgenes throughout the telencephalon and diencephalon. Transgene expression occurred mainly in non-GABAergic neurons, with little expression in glia. Early postnatal treatment resulted in partial rescue of the Fmr1 KO rat phenotype, including improved social dominance in treated Fmr1 KO females and partial rescue of locomotor activity in males. Electro-encephalogram (EEG) recordings showed correction of abnormal slow-wave activity during the sleep-like state in male Fmr1 KO rats. These findings support the use of AAV-based gene therapy as a treatment for FXS and specifically demonstrate the potential therapeutic benefit of human FMRP isoform 17 orthologs.

7.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201771

RESUMO

GM2 gangliosidosis disorders are a group of neurodegenerative diseases that result from a functional deficiency of the enzyme ß-hexosaminidase A (HexA). HexA consists of an α- and ß-subunit; a deficiency in either subunit results in Tay-Sachs Disease (TSD) or Sandhoff Disease (SD), respectively. Viral vector gene transfer is viewed as a potential method of treating these diseases. A recently constructed isoenzyme to HexA, called HexM, has the ability to effectively catabolize GM2 gangliosides in vivo. Previous gene transfer studies have revealed that the scAAV9-HEXM treatment can improve survival in the murine SD model. However, it is speculated that this treatment could elicit an immune response to the carrier capsid and "non-self"-expressed transgene. This study was designed to assess the immunocompetence of TSD and SD mice, and test the immune response to the scAAV9-HEXM gene transfer. HexM vector-treated mice developed a significant anti-HexM T cell response and antibody response. This study confirms that TSD and SD mouse models are immunocompetent, and that gene transfer expression can create an immune response in these mice. These mouse models could be utilized for investigating methods of mitigating immune responses to gene transfer-expressed "non-self" proteins, and potentially improve treatment efficacy.


Assuntos
Dependovirus/genética , Gangliosídeo G(M2)/metabolismo , Vetores Genéticos/administração & dosagem , Imunidade/imunologia , Doença de Sandhoff/imunologia , Doença de Tay-Sachs/imunologia , Cadeia alfa da beta-Hexosaminidase/genética , Animais , Modelos Animais de Doenças , Feminino , Terapia Genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença de Sandhoff/genética , Doença de Sandhoff/terapia , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/terapia
8.
Neurobiol Dis ; 146: 105118, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33031903

RESUMO

Fragile X syndrome (FXS), a neurodevelopmental disorder with autistic features, is caused by the loss of the fragile X mental retardation protein. Sex-specific differences in the clinical profile have been observed in FXS patients, but few studies have directly compared males and females in rodent models of FXS. To address this, we performed electroencephalography (EEG) recordings and a battery of autism-related behavioral tasks on juvenile and young adult Fmr1 knockout (KO) rats. EEG analysis demonstrated that compared to wild-type, male Fmr1 KO rats showed an increase in gamma frequency band power in the frontal cortex during the sleep-like immobile state, and both male and female KO rats failed to show an increase in delta frequency power in the sleep-like state, as observed in wild-type rats. Previous studies of EEG profiles in FXS subjects also reported abnormally increased gamma frequency band power, highlighting this parameter as a potential translatable biomarker. Both male and female Fmr1 KO rats displayed reduced exploratory behaviors in the center zone of the open field test, and increased distance travelled in an analysis of 24-h home cage activity, an effect that was more prominent during the nocturnal phase. Reduced wins against wild-type opponents in the tube test of social dominance was seen in both sexes. In contrast, increased repetitive behaviors in the wood chew test was observed in male but not female KO rats, while increased freezing in a fear conditioning test was observed only in the female KO rats. Our findings highlight sex differences between male and female Fmr1 KO rats, and indicate that the rat model of FXS could be a useful tool for the development of new therapeutics for treating this debilitating neurodevelopmental disorder.


Assuntos
Córtex Auditivo/fisiopatologia , Transtorno Autístico/fisiopatologia , Comportamento Animal/fisiologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Estimulação Acústica/métodos , Animais , Ansiedade/fisiopatologia , Córtex Auditivo/metabolismo , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Modelos Animais de Doenças , Eletroencefalografia/métodos , Comportamento Exploratório/fisiologia , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Ratos
9.
Mol Ther Methods Clin Dev ; 18: 50-61, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32577432

RESUMO

Mucopolysaccharidosis type IVA (MPS IVA) is due to the deficiency of GALNS (N-acetylgalactosamine 6-sulfate sulfatase) and is characterized by systemic skeletal dysplasia. We have evaluated adeno-associated virus 8 (AAV8) vectors expressing different forms of human GALNS under a liver-specific promoter. The vectors were delivered intravenously into 4-week-old MPS IVA knockout (KO) and immune tolerant (MTOL) mice at a dose of 5 × 1013 genome copies (GC)/kg. These mice were monitored for 12 weeks post-injection. GALNS enzyme activity was elevated significantly in plasma of all treated mice at 2 weeks post-injection. The activity observed was 4- to 19-fold higher than that in wild-type mice and was maintained throughout the monitoring period. Treatment with AAV vectors resulted in a reduction of keratan sulfate (KS) levels in plasma to normal levels 2 weeks post-injection, which were maintained until necropsy. Both vectors reduced the storage in articular cartilage, ligaments, and meniscus surrounding articular cartilage and growth plate region as well as heart muscle and valves. Our results suggest that the continuous presence of high levels of circulating enzyme increases the penetration into bone and heart and reduces the KS level, thereby improving storage in these regions. The current data support a strategy for developing a novel treatment to address the bone and heart disease in MPS IVA using AAV gene therapy.

10.
Sci Rep ; 9(1): 12065, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427630

RESUMO

Inhibitory/repressor-receptors are upregulated significantly on activated T cells, and have been the molecules of attention as targets for inducing immune tolerance. Induction of effective antigen specific tolerance depends on concurrent engagement of the TCR and one or more of these inhibitory receptors. Here, we show, for the first time that dendritic cells (DCs) can be efficiently engineered to express multiple T cell inhibitory ligands, and enhanced engagement of T cell inhibitory receptors, upon antigen presentation, by these DCs can induce effective CD4+ T cell tolerance and suppress autoimmunity. Compared to control DCs, antigen presentation by DCs that ectopically express CTLA4, PD1 and BTLA selective ligands (B7.1wa, PD-L1, and HVEM-CRD1 respectively) individually (mono-ligand DCs) or in combination (multi-ligand DCs) causes an inhibition of CD4+ T cell proliferation and pro-inflammatory cytokine response, as well as increase in Foxp3+ Treg frequency and immune regulatory cytokine production. Administration of self-antigen (mouse thyroglobulin; mTg) loaded multi-ligand DCs caused hyporesponsiveness to mTg challenge, suppression of autoantibody production, and amelioration of experimental autoimmune thyroiditis. Overall, this study shows that engineered DC-directed enhanced concurrent activation of multiple T cell coinhibitory pathways is an effective way to induce self-antigen specific T cell tolerance to suppress ongoing autoimmunity.


Assuntos
Autoimunidade/imunologia , Células Dendríticas/metabolismo , Tolerância Imunológica/imunologia , Linfócitos T/imunologia , Animais , Apresentação de Antígeno/imunologia , Antígenos/imunologia , Autoimunidade/genética , Antígeno B7-H1/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígeno CTLA-4/imunologia , Células Dendríticas/imunologia , Tolerância Imunológica/genética , Interleucina-10/imunologia , Ligantes , Ativação Linfocitária/imunologia , Camundongos , Receptor de Morte Celular Programada 1/imunologia , Receptores Imunológicos/imunologia , Transdução de Sinais/genética , Linfócitos T Reguladores/imunologia
11.
Immunology ; 157(1): 70-85, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30712258

RESUMO

The dietary supplement and prebiotic values of ß-glucan-rich products have been widely recognized and dietary approaches for modulating autoimmunity have been increasingly explored, we assess the impact of oral administration of high-purity yeast ß-glucan (YBG) on gut immune function, microbiota and type 1 diabetes (T1D) using mouse models. Oral administration of this non-digestible complex polysaccharide caused a dectin-1-dependent immune response involving increased expression of interleukin-10 (IL-10), retinaldehyde dehydrogenase (Raldh) and pro-inflammatory cytokines in the gut mucosa. YBG-exposed intestinal dendritic cells induced/expanded primarily Foxp3+ , IL-10+ and IL-17+ T cells, ex vivo. Importantly, prolonged oral administration of low-dose YBG at pre-diabetic stage suppressed insulitis and significantly delayed the appearance of T1D in non-obese diabetic (NOD) mice. Further, prolonged treatment with YBG showed increased Foxp3+ T-cell frequencies, and a significant change in the gut microbiota, particularly an increase in the abundance of Bacteroidetes and a decrease in the Firmicute members. Oral administration of YBG, together with Raldh-substrate and ß-cell antigen, resulted in better protection of NOD mice from T1D. These observations suggest that YBG not only has a prebiotic property, but also an oral tolerogenic-adjuvant-like effect, and these features could be exploited for modulating autoimmunity in T1D.


Assuntos
Bacteroidetes/fisiologia , Diabetes Mellitus Tipo 1/imunologia , Carboidratos da Dieta/uso terapêutico , Microbioma Gastrointestinal/imunologia , Linfócitos T Reguladores/imunologia , Família Aldeído Desidrogenase 1 , Animais , Diabetes Mellitus Tipo 1/dietoterapia , Diabetes Mellitus Tipo 1/microbiologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Humanos , Tolerância Imunológica , Imunidade , Imunomodulação , Interleucina-10/metabolismo , Isoenzimas/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Prebióticos , Retinal Desidrogenase/metabolismo
12.
Mol Ther ; 26(3): 874-889, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29433937

RESUMO

We report a global adeno-associated virus (AAV)9-based gene therapy protocol to deliver therapeutic galactosylceramidase (GALC), a lysosomal enzyme that is deficient in Krabbe's disease. When globally administered via intrathecal, intracranial, and intravenous injections to newborn mice affected with GALC deficiency (twitcher mice), this approach largely surpassed prior published benchmarks of survival and metabolic correction, showing long-term protection of demyelination, neuroinflammation, and motor function. Bone marrow transplantation, performed in this protocol without immunosuppressive preconditioning, added minimal benefits to the AAV9 gene therapy. Contrasting with other proposed pre-clinical therapies, these results demonstrate that achieving nearly complete correction of GALC's metabolic deficiencies across the entire nervous system via gene therapy can have a significant improvement to behavioral deficits, pathophysiological changes, and survival. These results are an important consideration for determining the safest and most effective manner for adapting gene therapy to treat this leukodystrophy in the clinic.


Assuntos
Metabolismo dos Carboidratos , Galactosilceramidase/genética , Galactosilceramidase/metabolismo , Terapia Genética , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Fenótipo , Animais , Vias Autônomas/metabolismo , Vias Autônomas/patologia , Vias Autônomas/ultraestrutura , Axônios/metabolismo , Axônios/patologia , Axônios/ultraestrutura , Comportamento Animal , Encéfalo/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Vetores Genéticos/farmacocinética , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/terapia , Masculino , Camundongos , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura , Distribuição Tecidual , Transdução Genética , Resultado do Tratamento
13.
J Neurosci Res ; 94(11): 1138-51, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27638599

RESUMO

Globoid cell leukodystrophy (GLD), or Krabbe disease, is an autosomal recessive neurodegenerative disease caused by the deficiency of the lysosomal enzyme galactocerebrosidase (GALC). Hematopoietic stem cell transplantation (HSCT) provides modest benefit in presymptomatic patients but is well short of a cure. Gene transfer experiments using viral vectors have shown some success in extending the survival in the mouse model of GLD, twitcher mice. The present study compares three single-stranded (ss) AAV serotypes, two natural and one engineered (with oligodendrocyte tropism), and a self-complementary (sc) AAV vector, all packaged with a codon-optimized murine GALC gene. The vectors were delivered via a lumbar intrathecal route for global CNS distribution on PND10-11 at a dose of 2 × 10(11) vector genomes (vg) per mouse. The results showed a similar significant extension of life span of the twitcher mice for all three serotypes (AAV9, AAVrh10, and AAV-Olig001) as well as the scAAV9 vector, compared to control cohorts. The rAAV gene transfer facilitated GALC biodistribution and detectable enzymatic activity throughout the CNS as well as in sciatic nerve and liver. When combined with BMT from syngeneic wild-type mice, there was significant improvement in survival for ssAAV9. Histopathological analysis of brain, spinal cord, and sciatic nerve showed significant improvement in preservation of myelin, with ssAAV9 providing the greatest benefit. In summary, we demonstrate that lumbar intrathecal delivery of rAAV/mGALCopt can significantly enhance the life span of twitcher mice treated at PND10-11 and that BMT synergizes with this treatment to improve the survival further. © 2016 Wiley Periodicals, Inc.


Assuntos
Transplante de Medula Óssea/métodos , Galactosilceramidase/uso terapêutico , Terapia Genética/métodos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Animais , Animais Recém-Nascidos , Dependovirus/genética , Modelos Animais de Doenças , Galactosilceramidase/biossíntese , Galactosilceramidase/genética , Vetores Genéticos/fisiologia , Injeções Espinhais , Leucodistrofia de Células Globoides/mortalidade , Camundongos , Camundongos Mutantes , RNA Mensageiro , Análise de Sobrevida , Resultado do Tratamento
14.
J Neurosci Res ; 94(11): 1349-58, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27638617

RESUMO

Globoid cell leukodystrophy (GLD, or Krabbe's disease) is a severe inherited neurodegenerative disease caused by the lack of a lysosomal enzyme, GALC. The disease has been characterized in humans as well as three naturally occurring animal models, murine, canine, and nonhuman primate. Multiple treatment strategies have been explored for GLD, including enzyme replacement therapy, small-molecule pharmacological approaches, gene therapy, and bone marrow transplant. No single therapeutic approach has proved to be entirely effective, and the reason for this is not well understood. It is unclear whether initiation of a neuroinflammatory cascade in GLD precedes demyelination, a hallmark of the disease, but it does precede overt symptoms. This Review explores what is known about the role of inflammation and the immune response in the progression of GLD as well as how various treatment strategies might interplay with innate and adaptive immune responses involved in GLD. The focus of this Review is on GLD, but these concepts may have relevance for other, related diseases. © 2016 Wiley Periodicals, Inc.


Assuntos
Imunidade Adaptativa/fisiologia , Leucodistrofia de Células Globoides/imunologia , Leucodistrofia de Células Globoides/terapia , Animais , Modelos Animais de Doenças , Humanos , Imunidade Inata/fisiologia
15.
Hum Gene Ther ; 27(7): 497-508, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27199088

RESUMO

GM2 gangliosidosis is a group of neurodegenerative diseases caused by ß-hexosaminidase A (HexA) enzyme deficiency. There is currently no cure. HexA is composed of two similar, nonidentical subunits, α and ß, which must interact with the GM2 activator protein (GM2AP), a substrate-specific cofactor, to hydrolyze GM2 ganglioside. Mutations in either subunit or the activator can result in the accumulation of GM2 ganglioside within neurons throughout the central nervous system. The resulting neuronal cell death induces the primary symptoms of the disease: motor impairment, seizures, and sensory impairments. This study assesses the long-term effects of gene transfer in a Sandhoff (ß-subunit knockout) mouse model. The study utilized a modified human ß-hexosaminidase α-subunit (µ-subunit) that contains critical sequences from the ß-subunit that enables formation of a stable homodimer (HexM) and interaction with GM2AP to hydrolyze GM2 ganglioside. We investigated a self-complementary adeno-associated viral (scAAV) vector expressing HexM, through intravenous injections of the neonatal mice. We monitored one cohort for 8 weeks and another cohort long-term for survival benefit, behavioral, biochemical, and molecular analyses. Untreated Sandhoff disease (SD) control mice reached a humane endpoint at approximately 15 weeks, whereas treated mice had a median survival age of 40 weeks, an approximate 2.5-fold survival advantage. On behavioral tests, the treated mice outperformed their knockout age-matched controls and perform similarly to the heterozygous controls. Through the enzymatic and GM2 ganglioside analyses, we observed a significant decrease in the GM2 ganglioside level, even though the enzyme levels were not significantly increased. Molecular analyses revealed a global distribution of the vector between brain and spinal cord regions. In conclusion, the neonatal delivery of a novel viral vector expressing the human HexM enzyme is effective in ameliorating the SD mouse phenotype for long-term. Our data could have implications not only for treatment of SD but also for Tay-Sachs disease (α-subunit deficiency) and similar brain disorders.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/administração & dosagem , Hexosaminidases/genética , Mutação/genética , Doença de Sandhoff/terapia , Animais , Animais Recém-Nascidos , Comportamento Animal , Modelos Animais de Doenças , Camundongos , Fenótipo , Doença de Sandhoff/enzimologia , Doença de Sandhoff/genética
16.
Hum Gene Ther ; 27(7): 509-21, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27197548

RESUMO

GM2 gangliosidosis is a family of three genetic neurodegenerative disorders caused by the accumulation of GM2 ganglioside (GM2) in neuronal tissue. Two of these are due to the deficiency of the heterodimeric (α-ß), "A" isoenzyme of lysosomal ß-hexosaminidase (HexA). Mutations in the α-subunit (encoded by HEXA) lead to Tay-Sachs disease (TSD), whereas mutations in the ß-subunit (encoded by HEXB) lead to Sandhoff disease (SD). The third form results from a deficiency of the GM2 activator protein (GM2AP), a substrate-specific cofactor for HexA. In their infantile, acute forms, these diseases rapidly progress with mental and psychomotor deterioration resulting in death by approximately 4 years of age. After gene transfer that overexpresses one of the deficient subunits, the amount of HexA heterodimer formed would empirically be limited by the availability of the other endogenous Hex subunit. The present study used a new variant of the human HexA α-subunit, µ, incorporating critical sequences from the ß-subunit that produce a stable homodimer (HexM) and promote functional interactions with the GM2AP- GM2 complex. We report the design of a compact adeno-associated viral (AAV) genome using a synthetic promoter-intron combination to allow self-complementary (sc) packaging of the HEXM gene. Also, a previously published capsid mutant, AAV9.47, was used to deliver the gene to brain and spinal cord while having restricted biodistribution to the liver. The novel capsid and cassette design combination was characterized in vivo in TSD mice for its ability to efficiently transduce cells in the central nervous system when delivered intravenously in both adult and neonatal mice. This study demonstrates that the modified HexM is capable of degrading long-standing GM2 storage in mice, and it further demonstrates the potential of this novel scAAV vector design to facilitate widespread distribution of the HEXM gene or potentially other similar-sized genes to the nervous system.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/administração & dosagem , Hexosaminidases/genética , Mutação/genética , Doença de Tay-Sachs/terapia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Gangliosídeo G(M2)/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Doença de Tay-Sachs/genética
17.
Mol Ther Methods Clin Dev ; 3: 15057, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26966698

RESUMO

Tay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or ß-subunits of ß-hexosaminidase A (HexA). Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP), and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits. Thus, we combined the critical features of both α- and ß-subunits into a single hybrid µ-subunit that contains the α-subunit active site, the stable ß-subunit interface and unique areas in each subunit needed to interact with GM2AP. To facilitate intracellular analysis and the purification of the µ-homodimer (HexM), CRISPR-based genome editing was used to disrupt the HEXA and HEXB genes in a Human Embryonic Kidney 293 cell line stably expressing the µ-subunit. In association with GM2AP, HexM was shown to hydrolyze a fluorescent GM2 ganglioside derivative both in cellulo and in vitro. Gene transfer studies in both Tay-Sachs and Sandhoff mouse models demonstrated that HexM expression reduced brain GM2 ganglioside levels.

18.
Diabetes ; 64(4): 1341-57, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25377877

RESUMO

The progression of autoimmune diseases is dictated by deviations in the fine balance between proinflammatory versus regulatory responses, and pathogen recognition receptors (PRRs) play a key role in maintaining this balance. Previously, we have reported that ligation of Toll-like receptor 2 (TLR2) and Dectin 1 on antigen-presenting cells by zymosan results in a regulatory immune response that prevents type 1 diabetes (T1D). Here, we show that TLR2 and Dectin 1 engagement by zymosan promotes regulatory T-cell (Treg) responses against the pancreatic ß-cell-specific antigen (Ag). Unlike the TLR4 ligand, bacterial lipopolysaccharide, which induced proinflammatory cytokines and pathogenic T cells, zymosan induced a mixture of pro- and anti-inflammatory factors and Tregs, both in vitro and in vivo. Ag-specific T cells that are activated using zymosan-exposed dendritic cells (DCs) expressed Foxp3 and produced large amounts of IL-10, TGF-ß1, and IL-17. NOD mice that received ß-cell-Ag-loaded, zymosan-exposed DCs showed delayed hyperglycemia. Injection of NOD mice at the prediabetic age and early hyperglycemic stage with ß-cell-Ag, along with zymosan, results in a superior protection of the NOD mice from diabetes as compared with mice that received zymosan alone. This therapeutic effect was associated with increased frequencies of IL-10-, IL-17-, IL-4-, and Foxp3-positive T cells, especially in the pancreatic lymph nodes. These results show that zymosan can be used as an immune regulatory adjuvant for modulating the T-cell response to pancreatic ß-cell-Ag and reversing early-stage hyperglycemia in T1D.


Assuntos
Diabetes Mellitus Tipo 1/prevenção & controle , Imunidade Inata/imunologia , Células Secretoras de Insulina/imunologia , Lectinas Tipo C/metabolismo , Linfócitos T Reguladores/imunologia , Receptor 2 Toll-Like/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Zimosan/farmacologia
19.
J Immunol ; 193(7): 3308-21, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25143443

RESUMO

ß-Glucans are naturally occurring polysaccharides in cereal grains, mushrooms, algae, or microbes, including bacteria, fungi, and yeast. Immune cells recognize these ß-glucans through a cell surface pathogen recognition receptor called Dectin-1. Studies using ß-glucans and other Dectin-1 binding components have demonstrated the potential of these agents in activating the immune cells for cancer treatment and controlling infections. In this study, we show that the ß-glucan from Saccharomyces cerevisiae induces the expression of immune regulatory cytokines (IL-10, TGF-ß1, and IL-2) and a tolerogenic enzyme (IDO) in bone marrow-derived dendritic cells as well as spleen cells. These properties can be exploited to modulate autoimmunity in the NOD mouse model of type 1 diabetes (T1D). Treatment of prediabetic NOD mice with low-dose ß-glucan resulted in a profound delay in hyperglycemia, and this protection was associated with increase in the frequencies of Foxp3(+), LAP(+), and GARP(+) T cells. Upon Ag presentation, ß-glucan-exposed dendritic cells induced a significant increase in Foxp3(+) and LAP(+) T cells in in vitro cultures. Furthermore, systemic coadministration of ß-glucan plus pancreatic ß cell Ag resulted in an enhanced protection of NOD mice from T1D as compared with treatment with ß-glucan alone. These observations demonstrate that the innate immune response induced by low-dose ß-glucan is regulatory in nature and can be exploited to modulate T cell response to ß cell Ag for inducing an effective protection from T1D.


Assuntos
Diabetes Mellitus Tipo 1/prevenção & controle , Polissacarídeos Fúngicos/farmacologia , Imunidade Inata/efeitos dos fármacos , Lectinas Tipo C/imunologia , Saccharomyces cerevisiae/química , beta-Glucanas/farmacologia , Animais , Citocinas/genética , Citocinas/imunologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Relação Dose-Resposta Imunológica , Polissacarídeos Fúngicos/química , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/patologia , Lectinas Tipo C/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Linfócitos T/imunologia , Linfócitos T/patologia , beta-Glucanas/química
20.
Diabetes ; 63(2): 632-44, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24194504

RESUMO

Nonobese diabetic (NOD) mice spontaneously develop type 1 diabetes (T1D), progression of which is similar to that in humans, and therefore are widely used as a model for understanding the immunological basis of this disease. The incidence of T1D in NOD mice is influenced by the degree of cleanliness of the mouse colony and the gut microflora. In this report, we show that the T1D incidence and rate of disease progression are profoundly influenced by the pH of drinking water, which also affects the composition and diversity of commensal bacteria in the gut. Female NOD mice that were maintained on acidic pH water (AW) developed insulitis and hyperglycemia rapidly compared with those on neutral pH water (NW). Interestingly, forced dysbiosis by segmented filamentous bacteria (SFB)-positive fecal transfer significantly suppressed the insulitis and T1D incidence in mice that were on AW but not in those on NW. The 16S rDNA-targeted pyrosequencing revealed a significant change in the composition and diversity of gut flora when the pH of drinking water was altered. Importantly, autoantigen-specific T-cell frequencies in the periphery and proinflammatory cytokine response in the intestinal mucosa are significantly higher in AW-recipient mice compared with their NW counterparts. These observations suggest that pH of drinking water affects the composition of gut microflora, leading to an altered autoimmune response and T1D incidence in NOD mice.


Assuntos
Bactérias/classificação , Diabetes Mellitus Tipo 1/metabolismo , Água Potável/química , Trato Gastrointestinal/microbiologia , Envelhecimento , Animais , Bactérias/genética , Citocinas/genética , Citocinas/metabolismo , Fezes , Feminino , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos NOD , RNA Bacteriano/genética , RNA Ribossômico 16S , Linfócitos T/classificação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...