Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; : 1-15, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37545344

RESUMO

The current study is to develop surface-modified peanut shell granules by incorporating activated carbon to enhance the removal efficiency of Orange G dye (OGD) through adsorption. Activated carbon was prepared from Arachis hypogaea shell (Peanut shell) using a chemical activation method. Ultrasonic Activated Peanut Shell Powder (UAPSP) was characterised using FT-IR and SEM analysis to identify functional groups and assess surface morphology. To determine the optimal conditions, a batch adsorption study was conducted. The results indicated a maximum removal efficiency of 99.5% and a maximum adsorption capacity of 298.36 mg/g under the following parameters: pH 5, temperature 303 K, interaction period of 60 min, a dosage of 0.5 g/L for an OGD concentration of 10 mg/L. The adsorption mechanism in the current system was evaluated using the Langmuir, Freundlich, Sips, Temkin, and D-R isotherms models. Among these, the Langmuir isotherm exhibited the best fit with an R2 value of 0.997. UAPSP demonstrated a monolayer adsorption capacity of 1.9 mg/g for OGD removal. The pseudo-second-order kinetic model provided the most effective fit with an R2 value of 0.998. Thermodynamic studies revealed that the adsorption process was spontaneous and exothermic, as evidenced by the negative values of ΔG° ( -1.497) and ΔS° (16.4052) at 303 K. Additionally, the mean free energy value (E) in the D-R isotherm increased to 10.58 KJ/mol with a temperature rise from 303 K to 343 K. The characterisation results confirmed that UAPSP is an effective, cost-free, and commercial alternative adsorbent for the removal of hazardous dyes from wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...