Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(6): e37697, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685544

RESUMO

Follistatin (FST), a folliculogenesis regulating protein, is found in relatively high concentrations in female ovarian tissues. FST acts as an antagonist to Activin, which is often elevated in human ovarian carcinoma, and thus may serve as a potential target for therapeutic intervention against ovarian cancer. The breast cancer susceptibility gene 1 (BRCA1) is a known tumor suppressor gene in human breast cancer; however its role in ovarian cancer is not well understood. We performed microarray analysis on human ovarian carcinoma cell line SKOV3 that stably overexpress wild-type BRCA1 and compared with the corresponding empty vector-transfected clones. We found that stable expression of BRCA1 not only stimulates FST secretion but also simultaneously inhibits Activin expression. To determine the physiological importance of this phenomenon, we further investigated the effect of cellular BRCA1 on the FST secretion in immortalized ovarian surface epithelial (IOSE) cells derived from either normal human ovaries or ovaries of an ovarian cancer patient carrying a mutation in BRCA1 gene. Knock-down of BRCA1 in normal IOSE cells demonstrates down-regulation of FST secretion along with the simultaneous up-regulation of Activin expression. Furthermore, knock-down of FST in IOSE cell lines as well as SKOV3 cell line showed significantly reduced cell proliferation and decreased cell migration when compared with the respective controls. Thus, these findings suggest a novel function for BRCA1 as a regulator of FST expression and function in human ovarian cells.


Assuntos
Proteína BRCA1/metabolismo , Folistatina/metabolismo , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Ativinas/genética , Ativinas/metabolismo , Proteína BRCA1/genética , Western Blotting , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Movimento Celular/genética , Células Cultivadas , Análise por Conglomerados , Feminino , Folistatina/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Epiteliais e Glandulares/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
2.
J Biol Chem ; 287(37): 31503-14, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22493435

RESUMO

The B-cell translocation gene 2, BTG2, a member of the BTG/TOB (B-cell translocation gene/transducers of ErbB2) gene family, has been implicated in cell cycle regulation, normal development, and possibly tumor suppression. Previously, it was shown that BTG2 expression is lost or down-regulated in human breast cancers. We now report that BTG2 protects human mammary epithelial cells from oxidative stress due to hydrogen peroxide and other oxidants. BTG2 protection against oxidative stress is BRCA1-independent but requires the antioxidant transcription factor NFE2L2 and is associated with up-regulation of the expression of antioxidant enzymes, including catalase and superoxide dismutases 1 and 2. BTG2 stimulation of antioxidant gene expression is also NFE2L2-dependent. We further demonstrate that BTG2 is a binding partner for NFE2L2 and increases its transcriptional activity. In addition, BTG2 is detectable at the antioxidant response element (ARE) of several NFE2L2-responsive genes. Finally, we show that the ability of BTG2 to associate with NFE2L2, to protect cells against oxidative stress, and to stimulate antioxidant gene expression requires box B, a short highly conserved amino acid motif characteristic of BTG2/TOB family proteins, but does not require boxes A or C. These findings suggest a novel role for BTG2 as a co-activator for NFE2L2 in up-regulating cellular antioxidant defenses.


Assuntos
Antioxidantes/metabolismo , Células Epiteliais/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Glândulas Mamárias Humanas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Motivos de Aminoácidos , Linhagem Celular Tumoral , Células Epiteliais/citologia , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Proteínas Imediatamente Precoces/genética , Glândulas Mamárias Humanas/citologia , Fator 2 Relacionado a NF-E2/genética , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Elementos de Resposta/fisiologia , Proteínas Supressoras de Tumor/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
3.
BMC Res Notes ; 5: 134, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22405347

RESUMO

BACKGROUND: Topo-poisons can produce an enzyme-DNA complex linked by a 3'- or 5'-phosphotyrosyl covalent bond. 3'-phosphotyrosyl bonds can be repaired by tyrosyl DNA phosphodiesterase-1 (TDP1), an enzyme known for years, but a complementary human enzyme 5'-tyrosyl DNA phosphodiesterase (hTDP2) that cleaves 5'-phosphotyrosyl bonds has been reported only recently. Although hTDP2 possesses both 3'- and 5'- tyrosyl DNA phosphodiesterase activity, the role of Mg2+ in its activity was not studied in sufficient details. RESULTS: In this study we showed that purified hTDP2 does not exhibit any 5'-phosphotyrosyl phosphodiesterase activity in the absence of Mg2+/Mn2+, and that neither Zn2+ or nor Ca2+ can activate hTDP2. Mg2+ also controls 3'-phosphotyrosyl activity of TDP2. In MCF-7 cell extracts and de-yolked zebrafish embryo extracts, Mg2+ controlled 5'-phosphotyrosyl activity. This study also showed that there is an optimal Mg2+ concentration above which it is inhibitory for hTDP2 activity. CONCLUSION: These results altogether reveal the optimal Mg2+ requirement in hTDP2 mediated reaction.


Assuntos
Embrião não Mamífero/enzimologia , Proteínas de Peixes/metabolismo , Magnésio/metabolismo , Manganês/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo , Animais , Cálcio/metabolismo , Extratos Celulares/química , DNA/metabolismo , Proteínas de Ligação a DNA , Eletroforese em Gel de Poliacrilamida , Embrião não Mamífero/embriologia , Ativação Enzimática , Escherichia coli/genética , Proteínas de Peixes/isolamento & purificação , Humanos , Células MCF-7 , Proteínas Nucleares/genética , Proteínas Nucleares/isolamento & purificação , Oligonucleotídeos/metabolismo , Diester Fosfórico Hidrolases , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Extratos de Tecidos/química , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Peixe-Zebra/embriologia , Zinco/metabolismo
4.
Funct Integr Genomics ; 12(1): 63-79, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21887486

RESUMO

The link between loss or defect in functional BRCA1 and predisposition for development of ovarian and breast cancer is well established. Germ-line mutations in BRCA1 are responsible for both hereditary breast and ovarian cancer, which is around 5-10% for all breast and 10-15% of all ovarian cancer cases. However, majority of cases of ovarian cancer are sporadic in nature. The inactivation of cellular BRCA1 due to mutations or loss of heterozygosity is one of the most commonly observed events in such cases. Complement-resistant retroviral BRCA1 vector, MFG-BRCA1, is the only approved gene therapy for ovarian cancer patients by the Federal and Drug Administration. Given the limited available information, there is a need to evaluate the effects of BRCA1 on the global gene expression pattern for better understanding the etiology of the disease. Here, we use Ingenuity Pathway Knowledge Base to examine the differential pattern of global gene expression due to stable expression of BRCA1 in the ovarian cancer cell line, SKOV3. The functional analysis detected at least five major pathways that were significantly (p < 0.05) altered. These include: cell to cell signaling and interaction, cellular function and maintenance, cellular growth and proliferation, cell cycle and DNA replication, and recombination repair. In addition, we were able to detect several biologically relevant genes that are central for various signaling networks involved in cellular homeostasis; TGF-ß1, TP53, c-MYC, NF-κB and TNF-α. This report provides a comprehensive rationale for tumor suppressor function(s) of BRCA1 in ovarian carcinogenesis.


Assuntos
Proteína BRCA1/metabolismo , Neoplasias Ovarianas/metabolismo , Transdução de Sinais , Proteína BRCA1/genética , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Análise por Conglomerados , Reparo do DNA , Replicação do DNA , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Mapas de Interação de Proteínas
5.
J Amino Acids ; 2011: 207691, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22312457

RESUMO

Posttranslational modifications (PTMs) modulate protein function in most eukaryotes and have a ubiquitous role in diverse range of cellular functions. Identification, characterization, and mapping of these modifications to specific amino acid residues on proteins are critical towards understanding their functional significance in a biological context. The interpretation of proteome data obtained from the high-throughput methods cannot be deciphered unambiguously without a priori knowledge of protein modifications. An in-depth understanding of protein PTMs is important not only for gaining a perception of a wide array of cellular functions but also towards developing drug therapies for many life-threatening diseases like cancer and neurodegenerative disorders. Many of the protein modifications like ubiquitination play a decisive role in various drug response(s) and eventually in disease prognosis. Thus, many commonly observed PTMs are routinely tracked as disease markers while many others are used as molecular targets for developing target-specific therapies. In this paper, we summarize some of the major, well-studied protein alterations and highlight their importance in various chronic diseases and normal development. In addition, other promising minor modifications such as SUMOylation, observed to impact cellular dynamics as well as disease pathology, are mentioned briefly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...