Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Peptides ; 171: 171118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38012983

RESUMO

Acute respiratory distress syndrome (ARDS) is a life-threatening lung condition characterized by widespread inflammation and pulmonary edema. Adrenomedullin (AM), a bioactive peptide with various functions, is expected to be applied in treating ARDS. Its functions are regulated primarily by two receptor activity-modifying proteins, RAMP2 and RAMP3, which bind to the AM receptor calcitonin receptor-like receptor (CLR). However, the roles of RAMP2 and RAMP3 in ARDS remain unclear. We generated a mouse model of ARDS via intratracheal administration of lipopolysaccharide (LPS), and analyzed the pathophysiological significance of RAMP2 and RAMP3. RAMP2 expression declined with LPS administration, whereas RAMP3 expression increased at low doses and decreased at high doses of LPS. After LPS administration, drug-inducible vascular endothelial cell-specific RAMP2 knockout mice (DI-E-RAMP2-/-) showed reduced survival, increased lung weight, and had more apoptotic cells in the lungs. DI-E-RAMP2-/- mice exhibited reduced expression of Epac1 (which regulates vascular endothelial cell barrier function), while RAMP3 was upregulated in compensation. In contrast, after LPS administration, RAMP3-/- mice showed no significant changes in survival, lung weight, or lung pathology, although they exhibited significant downregulation of iNOS, TNF-α, and NLRP3 during the later stages of inflammation. Based on transcriptomic analysis, RAMP2 contributed more to the circulation-regulating effects of AM, whereas RAMP3 contributed more to its inflammation-regulating effects. These findings indicate that, while both RAMP2 and RAMP3 participate in ARDS pathogenesis, their functions differ distinctly. Further elucidation of the pathophysiological significance and functional differences between RAMP2 and RAMP3 is critical for the future therapeutic application of AM in ARDS.


Assuntos
Adrenomedulina , Síndrome do Desconforto Respiratório , Animais , Camundongos , Adrenomedulina/genética , Adrenomedulina/metabolismo , Inflamação , Lipopolissacarídeos , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/genética , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Proteínas Modificadoras da Atividade de Receptores/genética , Receptores de Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo , Síndrome do Desconforto Respiratório/genética
3.
Radiol Case Rep ; 17(10): 3748-3753, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35965924

RESUMO

Osteoid osteoma (OO) is a benign osteoblastic tumor characterized by nocturnal pain that responds well to non-steroidal anti-inflammatory drugs. This condition commonly affects adolescents and young adults, and patients between 5 and 24 years of age account for 85% of all OO cases; it occurs very rarely in patients under 5 years old. Tumors often occur in the cortical bone in the diaphysis and metaphysis of the appendicular skeleton and are more common in the lower extremities than upper extremities. Here, we present an extremely rare case of intramedullary OO that arose in the proximal metaphysis of the humerus in a 2-year-old boy, which mimicked subacute osteomyelitis on imaging studies. We also conducted a retrospective literature review and found that the intramedullary location was fairly common in very young patients (<6 years old) with OO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...