Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 6(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36717248

RESUMO

FAM21 (family with sequence similarity 21) is a component of the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) protein complex that mediates actin polymerization at endosomal membranes to facilitate sorting of cargo-containing vesicles out of endosomes. To study the function of FAM21 in vivo, we generated conditional knockout (cKO) mice in the C57BL/6 background in which FAM21 was specifically knocked out of CD11c-positive dendritic cells. BMDCs from those mice displayed enlarged early endosomes, and altered cell migration and morphology relative to WT cells. FAM21-cKO cells were less competent in phagocytosis and protein antigen presentation in vitro, though peptide antigen presentation was not affected. More importantly, we identified the TLR2/CLEC4E signaling pathway as being down-regulated in FAM21-cKO BMDCs when challenged with its specific ligand Candida albicans Moreover, FAM21-cKO mice were more susceptible to C. albicans infection than WT mice. Reconstitution of WT BMDCs in FAM21-cKO mice rescued them from lethal C. albicans infection. Thus, our study highlights the importance of FAM21 in a host immune response against a significant pathogen.


Assuntos
Candidíase , Células Dendríticas , Proteínas dos Microfilamentos , Proteínas de Ligação a Fosfato , Receptor 2 Toll-Like , Animais , Camundongos , Candida albicans/metabolismo , Células Dendríticas/imunologia , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Receptor 2 Toll-Like/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Candidíase/imunologia
3.
J Virol ; 91(18)2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28659486

RESUMO

The Western Reserve (WR) strain of mature vaccinia virus contains an A26 envelope protein that mediates virus binding to cell surface laminin and subsequent endocytic entry into HeLa cells. Removal of the A26 protein from the WR strain mature virus generates a mutant, WRΔA26, that enters HeLa cells through plasma membrane fusion. Here, we infected murine bone marrow-derived macrophages (BMDM) with wild-type strain WR and the WRΔA26 mutant and analyzed viral gene expression and cellular innate immune signaling. In contrast to previous studies, in which both HeLa cells infected with WR and HeLa cells infected with WRΔA26 expressed abundant viral late proteins, we found that WR expressed much less viral late protein than WRΔA26 in BMDM. Microarray analysis of the cellular transcripts in BMDM induced by virus infection revealed that WR preferentially activated type 1 interferon receptor (IFNAR)-dependent signaling but WRΔA26 did not. We consistently detected a higher level of soluble beta interferon secretion and phosphorylation of the STAT1 protein in BMDM infected with WR than in BMDM infected with WRΔA26. When IFNAR-knockout BMDM were infected with WR, late viral protein expression increased, confirming that IFNAR-dependent signaling was differentially induced by WR and, in turn, restricted viral late gene expression. Finally, wild-type C57BL/6 mice were more susceptible to mortality from WRΔA26 infection than to that from WR infection, whereas IFNAR-knockout mice were equally susceptible to WR and WRΔA26 infection, demonstrating that the ability of WRΔA26 to evade IFNAR signaling has an important influence on viral pathogenesis in vivoIMPORTANCE The vaccinia virus A26 protein was previously shown to mediate virus attachment and to regulate viral endocytosis. Here, we show that infection with strain WR induces a robust innate immune response that activates type 1 interferon receptor (IFNAR)-dependent cellular genes in BMDM, whereas infection with the WRΔA26 mutant does not. We further demonstrated that the differential activation of IFNAR-dependent cellular signaling between WR and WRΔA26 not only is important for differential host restriction in BMDM but also is important for viral virulence in vivo Our study reveals a new property of WRΔA26, which is in regulating host antiviral innate immunity in vitro and in vivo.


Assuntos
Macrófagos/imunologia , Macrófagos/virologia , Transdução de Sinais , Vaccinia virus/imunologia , Proteínas Virais/imunologia , Animais , Deleção de Genes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/metabolismo , Fator de Transcrição STAT1/metabolismo , Vaccinia virus/genética , Proteínas Virais/genética
4.
Mol Immunol ; 45(4): 1146-52, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17727953

RESUMO

Betanodavirus, a small positive-sense bipartite RNA virus notoriously affecting marine aquaculture worldwide has been extensively studied in vitro. However, impending studies in elucidating virus-host interactions have been limiting due to the lack of appropriate animal disease models. Therefore, in this study, we have attempted to successfully establish NNV infection in zebrafish (Danio rerio) showing typical NNV symptoms and which could potentially serve as an in vivo model for studying virus pathogenesis. Zebrafish being already a powerful research tool in developmental biology and having its genome completely sequenced by the end of 2007 would expedite NNV research. We have observed viral titers peaked at 3 days post-infection and histological study showing lesions in brain tissues similar to natural host infection. Further, we used this infection model to study the acute and persistence infection during NNV infection. Interestingly, RT-PCR and immunoblotting assays revealed that the acute infection in larvae and juveniles is largely due to inactive interferon response as opposed to activated innate immune response during persistent infection in adult stage. This study is the first to demonstrate NNV infection of zebrafish, which could serve as a potential animal model to study virus pathogenesis and neuron degeneration research.


Assuntos
Interferons/imunologia , Nodaviridae/fisiologia , Infecções por Vírus de RNA/virologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Imunidade Inata , Larva/imunologia , Larva/virologia , Especificidade de Órgãos , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/mortalidade , Replicação Viral , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...