Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 98: 129575, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065292

RESUMO

The C797S mutation is one of the major factors behind resistance to the third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. Herein, we describe the discovery of the 2,4-diaminonicotinamide derivative 5j, which shows potent inhibitory activity against EGFR del19/T790M/C797S and L858R/T790M/C797S. We also report the structure-activity relationship of the 2,4-diaminonicotinamide derivatives and the co-crystal structure of 5j and EGFR del19/T790M/C797S.


Assuntos
Receptores ErbB , Neoplasias Pulmonares , Niacinamida , Humanos , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/efeitos dos fármacos , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , /farmacologia , Niacinamida/análogos & derivados , Niacinamida/química
2.
Atherosclerosis ; 190(2): 239-47, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16626720

RESUMO

The objective of the present study was to determine whether a novel acyl-CoA:cholesterol acyltransferase (ACAT) inhibitor, pactimibe sulfate (CS-505), could reduce atherosclerotic lesions beyond and independent of the reduction achieved by cholesterol lowering alone from two different types of lesions. (1) Early lesion model. Twelve-week-old apolipoprotein E (apoE)(-/-) mice were treated with 0.03 or 0.1% (w/w) CS-505, 0.1 or 0.3% avasimibe (CI-1011), or 3% cholestyramine for 12 weeks. Each treatment significantly reduced plasma cholesterol by a similar degree (43-48%). The antiatherosclerotic activity of 0.1% CS-505, however, was more efficacious than the effects of the other treatments (90% versus 40-50%). (2) Advanced lesion model. Twenty-four-week-old apoE(-/-) mice were treated with 0.03 or 0.1% CS-505 or 0.1% CI-1011 for 12 weeks. CS-505 at 0.1% revealed enhanced lesion reduction compared with 0.1% CI-1011 (77% versus 54%), whereas the plasma cholesterol-lowering effect of 0.1% CS-505 was almost the same as that of 0.1% CI-1011. Furthermore, immunohistochemical analysis demonstrated that CS-505 significantly reduced the number of macrophages and expression of matrix metalloproteinase (MMP)-2, MMP-9, and MMP-13. These data indicate that CS-505 can reduce and stabilize atherosclerotic lesions. This antiatherosclerotic activity is exerted via both cholesterol lowering and direct ACAT inhibition in plaque macrophages.


Assuntos
Anticolesterolemiantes/uso terapêutico , Apolipoproteínas E/deficiência , Aterosclerose/tratamento farmacológico , Ácidos Indolacéticos/uso terapêutico , Esterol O-Aciltransferase/antagonistas & inibidores , Animais , Anticolesterolemiantes/farmacologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Linhagem Celular , Humanos , Ácidos Indolacéticos/farmacologia , Lipídeos/sangue , Camundongos , Camundongos Knockout , Monócitos/efeitos dos fármacos
3.
J Atheroscler Thromb ; 11(1): 22-8, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15067195

RESUMO

In a recent paper, we reported that pravastatin sodium (pravastatin), an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme. A reductase, decreases the concentrations of low density lipoprotein (LDL) cholesterol through an LDL receptor pathway in Japanese White (JW) rabbits, whereas this agent lowers high density lipoprotein (HDL) cholesterol in a manner correlated with a reduction of very low density lipoprotein (VLDL) cholesterol secretion from the liver. In the present study, we administered pravastatin to JW rabbits at 30 mg/kg for 14 days and examined further the mechanisms for the reduction of HDL cholesterol. A striking finding was that the 4-day administration of pravastatin at 30 mg/kg selectively decreased the concentration of HDL cholesterol. Since 4-day administration of pravastatin to JW rabbits did not change the concentrations of hepatic LDL receptor proteins, these receptors were not likely to be involved in the reduction of HDL cholesterol. Another important finding was that pravastatin suppressed VLDL cholesteryl ester (CE) secretion from the liver, but not that of other VLDL lipids and VLDL proteins, indicating that the CE-poor VLDL particles were secreted by the consecutive administration of pravastatin. There were, however, no differences in the levels of VLDL cholesterol between the control and pravastatin-treated groups over the experimental period of 14 days. These observations raised the possibility that the reduction of HDL cholesterol in the pravastatin-treated group was due to the transfer of CE molecules from HDL particles to these CE-poor VLDL particles. Molecular species analysis supported this notion that the VLDL-CE in the pravastatin-treated group was rich in cholesteryl linoleate, indicating that the CE in this group mainly originated from HDL, whereas the VLDL-CE in the control group was rich in cholesteryl oleate, indicating that the CE in this group originated from the liver. The present study suggests that pravastatin lowers HDL cholesterol by transferring CE from these lipoproteins to VLDL in JW rabbits.


Assuntos
Ésteres do Colesterol/metabolismo , HDL-Colesterol/metabolismo , VLDL-Colesterol/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Fígado/efeitos dos fármacos , Pravastatina/farmacologia , Animais , Fígado/metabolismo , Masculino , Coelhos
4.
J Biochem ; 132(3): 395-400, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12204108

RESUMO

In experimental animals and humans, the concentration of serum mevalonate (MVA), a direct product of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, is considered to reflect the activity of whole-body sterol synthesis. The relationship between the concentration of serum MVA and the activity of sterol synthesis in tissues, however, has not been fully clarified. In the present study, we examined MVA metabolism by using pravastatin, a liver-selective inhibitor of HMG-CoA reductase, and common marmosets, a good model animal for studying lipid metabolism. In the time course study, the maximal reduction in the concentration of serum MVA was observed 2 h after a single oral administration of 30 mg/kg pravastatin to common marmosets. We, therefore, examined the relationship between the concentrations of serum and hepatic MVA, and sterol synthesis in some tissues at this time point. Sterol synthesis was determined ex vivo in tissue slices by measuring the incorporation of [14C]acetate into digitonin-precipitable [14C]sterols. Pravastatin at 0.03-30 mg/kg reduced dose-dependently the activity of hepatic sterol synthesis, whereas no significant reduction of sterol synthesis was observed in other tissues such as intestine, kidney, testis and spleen, even with the highest dose (30 mg/kg). The liver-specific inhibition of sterol synthesis caused parallel reductions in the concentrations of both serum and liver MVA. In addition, there were good correlations between the concentration of either serum or hepatic MVA and the activity of hepatic sterol synthesis. These data indicate that the major origin of serum MVA is the liver, and that the concentration of serum MVA reflects the concentration of hepatic MVA and the activity of hepatic sterol synthesis 2 h after a single oral administration of pravastatin in common marmosets.


Assuntos
Anticolesterolemiantes/farmacologia , Ácido Mevalônico/metabolismo , Pravastatina/farmacologia , Administração Oral , Animais , Anticolesterolemiantes/administração & dosagem , Callithrix , Colesterol/sangue , Fígado/metabolismo , Masculino , Ácido Mevalônico/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...