Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 17(10): 1417-1428, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30247493

RESUMO

The present study investigates the fluorescence properties of BO21 and their dependence on various intracellular conditions. The results obtained with cell-free solutions indicate that the influences of pH and temperature on the fluorescence spectra are negligible, while viscosity, various proteins and heparin have significant influence. In the presence of heparin, a red shift of the emission spectrum (from 515 to 550 nm) is observed, suggesting that this shift cannot simply be attributed to electrostatic interaction between BO21 and the polyanionic heparin, but rather to aggregation of BO21 on the polyanion. In water, the quantum yield of BO21 was found to be 1000 times lower than that of fluorescein, yet surprisingly its fluorescence polarization (FP) was found to be about 40 times higher (FP = 0.470), even though both have similar structures and molecular weights. A thorough analytical and experimental investigation of these phenomena indicates that the very high FP of BO21 in water is a consequence of its very short lifetime. However, upon the addition of heparin to aqueous BO21, the fluorescence lifetime (FLT) of BO21 increases from τ = 10.35 to 56.5 ps, with a consequent dramatic drop in its fluorescence polarization from 0.470 to 0.230. From its behavior in aqueous glycerol solution, it is hypothesized, with support from theoretical calculations, that BO21 is a molecular rotor. Using these properties, BO21 may be a good candidate as a sensor, for example, of heparin levels in blood or of intracellular viscosity.

2.
J Phys Chem A ; 119(38): 9794-804, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26295368

RESUMO

Spectroscopic properties of cationic dye basic orange 21 (BO21) in solutions, in solids, and within leukocytes were examined. Results obtained with solutions indicate that influence of variables such as pH, viscosity, salt composition, and various proteins on the absorption spectrum of BO21 is negligible. However, in the presence of heparin, a blue shift (484-465 nm) is observed, which is attributed to the aggregation of BO21 on the polyanion. Applying density functional theory demonstrates that in aqueous solutions (a) the formation of BO21 oligomers is thermodynamically favorable, they are oriented in an antiparallel dipolar arrangement, and their binding energies are lower than those of parallel dipolar arrangements, (b) association between BO21 aggregates and heparin is highly favorable, and (c) the blue shift is due to the mixing of π → π* transitions caused by BO21 molecule stacking. However, when embedded in basophils, the absorption spectra of intracellular BO21 is extremely red-shifted, with two peaks (at 505 and 550 nm) found to be attributed to BO21 and the BO21-heparin complex, respectively, which are intracellularly hosted in nonaqueous environments. Initial evidence of the ability to differentiate between leukocyte types by BO21 is presented.


Assuntos
Compostos Azo/química , Cátions/química , Corantes/química , Heparina/química , Leucemia Basofílica Aguda/patologia , Modelos Moleculares , Animais , Computadores Moleculares , Humanos , Estrutura Molecular , Ratos , Análise Espectral , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...