Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 120(35): 9347-61, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27513011

RESUMO

Temozolomide (TMZ) was paired with each of the five nucleic acid bases, and the potential energy surface searched for all minima, in the context of dispersion-corrected density functional theory and MP2 methods. Three types of arrangements were observed, with competitive stabilities. Coplanar H-bonding structures, reminiscent of Watson-Crick base pairs were typically the lowest in energy, albeit by a small amount. Also very stable were perpendicular arrangements that included one or more H-bonds. The two monomers were stacked approximately parallel to one another in the third category, some of which contained weak and distorted H-bonds. Dispersion was found to be a dominating attractive force, largest for the stacked structures, and smallest for the coplanar dimers.


Assuntos
Adenina/química , Citosina/química , Dacarbazina/análogos & derivados , Guanina/química , Timina/química , Uracila/química , Dacarbazina/química , Dimerização , Teoria Quântica , Temozolomida
2.
J Mol Model ; 22(4): 77, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26971506

RESUMO

Dispersion-corrected density functional theory (DFT) and MP2 quantum chemical methods are used to examine homodimers of temozolomide (TMZ). Of the 12 dimer configurations found to be minima, the antarafacial stacked dimer is the most favored, it is lower in energy than coplanar dimers which are stabilized by H-bonds. The comparison between B3LYP and B3LYP-D binding energies points to dispersion as a primary factor in stabilizing the stacked geometries. CO(π) → CO(π*) charge transfers between amide groups in the global minimum are identified by NBO, as well as a pair of weak CH∙∙N H-bonds. AIM analysis of the electron density provides an alternative description which includes N∙∙O, N∙∙N, and C∙∙C noncovalent bonds.

3.
J Phys Chem A ; 116(33): 8608-14, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22853776

RESUMO

A density functional theory (DFT) study is performed to determine the stability of the complexes formed between either the N or O site of 3-methyl-4-pyrimidone and 1-methyl-2-pyrimidone molecules and different ligands. The studied ligands are boron and alkali Lewis acids, namely, B(CH(3))(3), HB(CH(3))(2), H(2)B(CH(3)), BH(3), H(2)BF, HBF(2), BF(3), Li(+), Na(+), and K(+). The acids are divided into two groups according to their hardness. The reactivity predictions, according to the molecular electrostatic potential (MEP) map and the natural bond orbital (NBO) analysis, are in agreement with the calculated relative stabilities. Our findings reveal a strong regioselectivity with borane and its derivatives preferring the nitrogen site in both pyrimidone isomers, while a preference for oxygen is observed for the alkali acids in the 3-methyl-4-pyrimidone molecule. The complexation of 1-methyl-2-pyrimidone with these hard alkali acids does not show any discrimination between the two sites due to the presence of a continuous delocalized density region between the nitrogen and the oxygen atoms. The preference of boron Lewis acids toward the N site is due to the stronger B-N bond as compared to the B-O bond. The influence of fluorine or methyl substitution on the boron atom is discussed through natural orbital analysis (NBO) concentrating on the overlap of the boron empty p-orbital with the F lone pairs and methyl hyperconjugation, respectively. The electrophilicity of the boron acids gives a good overall picture of the interaction capabilities with the Lewis base.


Assuntos
Ácidos de Lewis/química , Pirimidinonas/química , Teoria Quântica , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...