Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Surg Endosc ; 37(11): 8919-8929, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37872427

RESUMO

BACKGROUND: An objective evaluation of the functional state and viability of biological tissues during minimally invasive surgery remains unsolved task. Various non-contact methods for evaluating perfusion during laparoscopic surgery are discussed in the literature, but so far there have been no reports of their use in clinical settings. METHODS AND PATIENTS: Imaging photoplethysmography (iPPG) is a new method for quantitative assessment of perfusion distribution along the tissue. This is the first study in which we demonstrate successful use of iPPG to assess perfusion of organs during laparoscopic surgery in an operation theater. We used a standard rigid laparoscope connected to a standard digital monochrome camera, and abdominal organs were illuminated by green light. A distinctive feature is the synchronous recording of video frames and electrocardiogram with subsequent correlation data processing. During the laparoscopically assisted surgeries in nine cancer patients, the gradient of perfusion of the affected organs was evaluated. In particular, measurements were carried out before preparing a part of the intestine or stomach for resection, after anastomosis, or during physiological tests. RESULTS: The spatial distribution of perfusion and its changes over time were successfully measured in all surgical cases. In particular, perfusion gradient of an intestine before resection was visualized and quantified by our iPPG laparoscope in all respective cases. It was also demonstrated that systemic administration of norepinephrine leads to a sharper gradient between well and poorly perfused areas of the colon. In four surgical cases, we have shown capability of the laparoscopic iPPG system for intra-abdominal assessment of perfusion in the anastomosed organs. Moreover, good repeatability of continuous long-term measurements of tissue perfusion inside the abdominal cavity was experimentally demonstrated. CONCLUSION: Our study carried out in real clinical settings has shown that iPPG laparoscope is feasible for intra-abdominal visualization and quantitative assessment of perfusion distribution.


Assuntos
Cavidade Abdominal , Laparoscopia , Humanos , Fotopletismografia/métodos , Laparoscopia/métodos , Diagnóstico por Imagem , Perfusão
2.
Biomed Opt Express ; 13(7): 3954-3966, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35991934

RESUMO

Intraoperative monitoring of tissue perfusion is of great importance for optimizing surgery and reducing postoperative complications. To date, there is no standard procedure for assessing blood circulation in routine clinical practice. Over the past decade, indocyanine green (ICG) fluorescence angiography is most commonly used for intraoperative perfusion evaluation. Imaging photoplethysmography (iPPG) potentially enables contactless assessment of the blood supply to organs. However, no strong evidence of this potential has been provided so far. Here we report results of a comparative assessment of tissue perfusion obtained using custom-made iPPG and commercial ICG-fluorescence systems during eight different gastrointestinal surgeries. Both systems allow mapping the blood-supply distribution over organs. It was demonstrated for the first time that the quantitative assessment of blood perfusion by iPPG is in good agreement with that obtained by ICG-fluorescence imaging in all surgical cases under study. iPPG can become an objective quantitative monitoring system for tissue perfusion in the operating room due to its simplicity, low cost and no need for any agent injections.

3.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012323

RESUMO

BACKGROUND: Infection caused by SARS-CoV-2 mostly affects the upper and lower respiratory tracts and causes symptoms ranging from the common cold to pneumonia with acute respiratory distress syndrome. Chemokines are deeply involved in the chemoattraction, proliferation, and activation of immune cells within inflammation. It is crucial to consider that mutations within the virion can potentially affect the clinical course of SARS-CoV-2 infection because disease severity and manifestation vary depending on the genetic variant. Our objective was to measure and assess the different concentrations of chemokines involved in COVID-19 caused by different variants of the virus. METHODS: We used the blood plasma of patients infected with different variants of SARS-CoV-2, i.e., the ancestral Wuhan strain and the Alpha, Delta, and Omicron variants. We measured the concentrations of 11 chemokines in the samples: CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1ß, CCL7/MCP-3, CCL11/Eotaxin, CCL22/MDC, CXCL1/GROα, CXCL8/IL-8, CXCL9/MIG, CXCL10/IP-10, and CX3CL1/Fractalkine. RESULTS: We noted a statistically significant elevation in the concentrations of CCL2/MCP-1, CXCL8/IL-8, and CXCL1/IP-10 independently of the variant, and a drop in the CCL22/MDC concentrations. CONCLUSIONS: The chemokine concentrations varied significantly depending on the viral variant, leading us to infer that mutations in viral proteins play a role in the cellular and molecular mechanisms of immune responses.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/imunologia , Quimiocina CXCL10 , Quimiocinas/sangue , Humanos , Interleucina-8 , Plasma
4.
Sci Rep ; 12(1): 1143, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064190

RESUMO

Evaluation of tissue perfusion at various stages of surgery is of great importance for the implementation of the concept of safe surgery, including operations on the abdominal organs. Currently, there is no accurate and reliable intraoperative method for assessing tissue perfusion that could help surgeons determine the risks of ischemia and improve outcomes. We propose novel method of intraoperative assessment of tissue perfusion using video camera synchronized with the electrocardiogram. The technique is referred to as imaging photoplethysmography (iPPG). It can be used continuously for monitoring blood supply to organs e.g., before and after anastomosis. In our study, we followed 14 different surgical cases (four stomach and ten colorectal cancers) requiring reconstruction of various organs with anastomosis. With iPPG, intraoperative blood perfusion was successfully visualized and quantified in all 14 patients under study. As most indicative, here we describe in detail two clinical demonstrations during gastrectomy for gastric cancer and right-sided hemicolectomy for cancer of the ascending colon. Feasibility of the iPPG system to assess blood perfusion in organs before and after anastomosis during open surgery was demonstrated for the first time.


Assuntos
Monitorização Intraoperatória/métodos , Fotopletismografia , Fluxo Sanguíneo Regional , Colectomia/efeitos adversos , Colectomia/métodos , Neoplasias Colorretais/cirurgia , Eletrocardiografia , Estudos de Viabilidade , Gastrectomia/efeitos adversos , Gastrectomia/métodos , Humanos , Neoplasias Gástricas/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...