Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 33(39)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714563

RESUMO

To improve the endurance and polarization switching speed of Hf1-xZrxO2(HZO) ferroelectric films, we designed a 10 nm Hf0.5Zr0.5O2 + ZrO2(HZZ) nanolaminate structure. Three films with different ZrO2interlayers thicknesses were compared to find the optimal condition to implement the effect of the topological domain wall which was proposed recently. The HZZ film were deposited by repeatedly stacking ten HZO (∼0.92 nm) and six ZrO2(∼0.53 nm) layers; they exhibited a dramatic reduction of coercive field without an effective loss of remnant polarization. The endurance at operation voltage increased by more than 100 times compared with that of the solid solution HZO film, and the switching speed was increased by more than two times. The formation of the tetragonal phase-like spacer between the ferroelectric polar regions appears to be the main factor associated with the reduction of the switching barrier and leads to the acceleration of the switching propagation over multiple domains.

2.
Small ; 18(23): e2107575, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35510954

RESUMO

Hafnium oxide (HfO2 ) is one of the mature high-k dielectrics that has been standing strong in the memory arena over the last two decades. Its dielectric properties have been researched rigorously for the development of flash memory devices. In this review, the application of HfO2 in two main emerging nonvolatile memory technologies is surveyed, namely resistive random access memory and ferroelectric memory. How the properties of HfO2 equip the former to achieve superlative performance with high-speed reliable switching, excellent endurance, and retention is discussed. The parameters to control HfO2 domains are further discussed, which can unleash the ferroelectric properties in memory applications. Finally, the prospect of HfO2 materials in emerging applications, such as high-density memory and neuromorphic devices are examined, and the various challenges of HfO2 -based resistive random access memory and ferroelectric memory devices are addressed with a future outlook.

3.
Nanotechnology ; 33(15)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34959226

RESUMO

A large coercive fieldECof HfO2based ferroelectric devices poses critical performance issues in their applications as ferroelectric memories and ferroelectric field effect transistors. A new design to reduceECby fabricating nanolaminate Hf0.5Zr0.5O2/ZrO2(HZZ) thin films is used, followed by an ensuing annealing process at a comparatively high temperature 700 °C. High-resolution electron microscopy imaging detects tetragonal-like domain walls between orthorhombic polar regions. These walls decrease the potential barrier of polarization reversal in HfO2based films compared to the conventional domain walls with a single non-polar spacer, causing about a 40% decrease inEC. Capacitance versus electric field measurements on HZZ thin film uncovered a substantial increase of dielectric permittivity near theECcompared to the conventional Hf0.5Zr0.5O2thin film, justifying the higher mobility of domain walls in the developed HZZ film. The tetragonal-like regions served as grease easing the movement of the domain wall and reducingEC.

4.
Nanotechnology ; 33(8)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34787101

RESUMO

The formation of an interfacial layer is believed to affect the ferroelectric properties in HfO2based ferroelectric devices. The atomic layer deposited devices continue suffering from a poor bottom interfacial condition, since the formation of bottom interface is severely affected by atomic layer deposition and annealing process. Herein, the formation of bottom interfacial layer was controlled through deposition of different bottom electrodes (BE) in device structure W/HZO/BE. The transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy analyses done on devices W/HZO/W and W/HZO/IrOxsuggest the strong effect of IrOxin controlling bottom interfacial layer formation while W/HZO/W badly suffers from interfacial layer formation. W/HZO/IrOxdevices show high remnant polarization (2Pr) âˆ¼ 53µC cm-2, wake-up free endurance cycling characteristics, low leakage current with demonstration of low annealing temperature requirement as low as 350 °C, valuable for back-end-of-line integration. Further, sub-5 nm HZO thicknesses-based W/HZO/IrOxdevices demonstrate high 2Prand wake-up free ferroelectric characteristics, which can be promising for low power and high-density memory applications. 2.2 nm, 3 nm, and 4 nm HZO based W/HZO/IrOxdevices show 2Prvalues 13.54, 22.4, 38.23µC cm-2at 4 MV cm-1and 19.96, 30.17, 48.34µC cm-2at 5 MV cm-1, respectively, with demonstration of wake-up free ferroelectric characteristics.

5.
Nanoscale ; 13(32): 13631-13640, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34477638

RESUMO

The existence of a morphotropic phase boundary (MPB) inside HfO2-ZrO2 solid solution thin films has been predicted; if it exists, it provides a new path toward an ideal silicon-compatible dielectric. Herein, we investigate the structural evolution along with the dielectric and ferroelectric behaviors of differently designed HfO2-ZrO2 thin films to engineer the density of the MPB inside the film structure and consequently, enhance the dielectric properties. Polarization vs. electric field (P-E) measurements of Hf0.25Zr0.75O2 thin films reveal ferroelectric (FE)-antiferroelectric (AFE) characteristics. For this composition, the dielectric constant εr is higher than those of FE Hf0.5Zr0.5O2 and AFE ZrO2 thin films; the difference is attributed to the formation of the MPB. To increase the density of the MPB and subsequently the dielectric properties, 10 nm Hf0.5Zr0.5O2 (FE)/ZrO2 (AFE) nanolaminates were prepared with different lamina thicknesses tL. The coexistence of FE and AFE properties was confirmed by structural characterization studies and P-E measurements. The thinnest layered nanolaminate (tL = 6 Å) showed the strongest dielectric constant εr∼ 60 under a small signal ac electric field of ∼50 kV cm-1; this is the highest εr so far observed in HfO2-ZrO2 thin films. This behavior was attributed to the formation of an MPB near FE/AFE interfaces. The new design provides a promising approach to achieve an ideal high-κ CMOS-compatible device for the current electronic industry.

6.
Nanotechnology ; 32(44)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34293723

RESUMO

Morphotropic phase boundaries (MPBs) show substantial piezoelectric and dielectric responses, which have practical applications. The predicted existence of MPB in HfO2-ZrO2solid solution thin film has provided a new way to increase the dielectric properties of a silicon-compatible device. Here, we present a new fabrication design by which the density of MPBρMPBand consequently the dielectric constantϵrof HfO2-ZrO2thin film was considerably increased. TheρMPBwas controlled by fabrication of a 10 nm [1 nm Hf0.5Zr0.5O2(ferroelectric)/1 nm ZrO2(antiferroelectric)] nanolaminate followed by an appropriate annealing process. The coexistence of orthorhombic and tetragonal structures, which are the origins of ferroelectric (FE) and antiferroelectric (AFE) behaviors, respectively, was structurally confirmed, and a double hysteresis loop that originates from AFE ordering, with some remnant polarization that originates from FE ordering, was observed inP-Ecurve. A remarkable increase inϵrcompared to the conventional HfO2-ZrO2thin film was achieved by controlling the FE-AFE ratio. The fabrication process was performed at low temperature (250 °C) and the device is compatible with silicon technology, so the new design yields a device that has possible applications in near-future electronics.

7.
Nanotechnology ; 32(31)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33903285

RESUMO

We report a high-pressure oxygen annealing (HPOA) process to improve the performance of TiN/Hf0.5Zr0.5O2(HZO)/TiN devices by controlling the number of oxygen vacancies and carbon contaminants. The ferroelectric properties of HZO film after HPOA at 250 °C for 30 min under different oxygen pressures from 0 to 80 bar were evaluated by electrical and structural characterizations. We found that a sample treated with an oxygen pressure at 40 bar exhibited large switchable polarization (2Pr) of approximately 38 and 47µC cm-2in its pristine and wake-up states, respectively. Compared to a control sample, an approximately 40% reduction in the wake-up effect was achieved after HPOA at 40 bar. Improved ferroelectric properties of HZO film can be explained by the appropriate amount of oxygen vacancies and reduced carbon contaminants after HPOA.

8.
Nanotechnology ; 32(5): 055703, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33053526

RESUMO

In this paper, we propose a method to improve the performance of TiN/Hf0.5Zr0.5O2 (HZO)/TiN Nano-capacitors used in memory devices. Instead of direct fabrication of the TiN/HZO/TiN device, our method involves an intermediate step in which W metal is used as a capping material to induce a large in-plane tensile strain during rapid thermal annealing, resulting in a total suppression of the monoclinic phase and the appearance of the ferroelectric phase. Consequently, after removing the W capping electrode through an etching process and the post-deposition of a TiN top electrode at room temperature, a high remnant polarization of approximately 40 µC cm-2 and a 65% increase of coercive field were obtained. Moreover, the leakage current was reduced by an order of magnitude compared to the normal TiN/HZO/TiN capacitor; this result is attributed to the presence (absence) of the W/HZO (TiN/HZO) top interface during thermal annealing. The formation of a TiO x interfacial layer at elevated temperatures, which pulls oxygen from the HZO layer, resulting in the formation of oxygen vacancies, is the main cause of the high leakage current through the TiN/HZO/TiN stacks. It was confirmed that the re-capped TiN/HZO/TiN capacitor has a comparable endurance to a normal capacitor. Our results offer the re-capping process as a promising approach to fabricating HfO2-based ferroelectric memory devices with various electrode materials.

9.
J Phys Condens Matter ; 32(40): 405607, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32570228

RESUMO

NiO thin films with various strains were grown on SrTiO3 (STO) and MgO substrates using a pulsed laser deposition technique. The films were characterized using an x-ray diffraction, atomic force microscopy, and infrared reflectance spectroscopy. The films grown on STO (001) substrate show a compressive in-plane strain which increases as the film thickness is reduced resulting in an increase of the NiO phonon frequency. On the other hand, a tensile strain was detected in the NiO film grown on MgO (001) substrate which induces a softening of the phonon frequency. Overall, the variation of in-plane strain from -0.36% (compressive) to 0.48% (tensile) yields the decrease of the phonon frequency from 409.6 cm-1 to 377.5 cm-1 which occurs due to the ∼1% change of interatomic distances. The magnetic exchange-driven phonon splitting Δω in three different samples, with relaxed (i.e. zero) strain, 0.36% compressive strain and 0.48% tensile strain, was measured as a function of temperature. The Δω increases on cooling in NiO relaxed film as in the previously published work on a bulk crystal. The splitting increases on cooling also in 0.48% tensile strained film, but Δω is systematically 3-4 cm-1 smaller than in relaxed film. Since the phonon splitting is proportional to the non-dominant magnetic exchange interaction J 1, the reduction of phonon splitting in tensile-strained film was explained by a diminishing of J 1 with lattice expansion. Increase of Δω on cooling can be also explained by rising of J 1 with reduced temperature.

10.
J Phys Condens Matter ; 32(17): 175402, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31940603

RESUMO

MnO thin films with various thicknesses and strains were grown on MgO substrates by pulsed laser deposition technique, then characterized using x-ray diffraction and infrared reflectance spectroscopy. Films grown on (0 0 1)-oriented MgO substrates exhibit homogenous biaxial compressive strain which increases as the film thickness is reduced. For that reason, in paramagnetic phase, the frequency of doubly-degenerate phonon increases with the strain, and splits below Néel temperature T N due to the magnetic-exchange interaction. The phonon splitting in the MnO (0 0 1) films is 20% larger than that of the bulk MnO. Films grown on (1 1 0)-oriented MgO substrates exhibit a huge phonon splitting already at room temperature due to the anisotropic in-plane compressive strain. Below T N, the lower-frequency phonon splits in the IR spectra and the higher-frequency phonon strongly hardens in AFM phase; these features are evidences for a spin-order-induced structural phase transition from tetragonal to a lower symmetry phase. Total phonon splitting is 55 cm-1 in (1 1 0)-oriented MnO film, which is more than twice the value in bulk MnO, but since the splitting is present already in paramagnetic phase, we cannot clearly correlate it with the value of exchange coupling constant. Nevertheless, at least observation of enhanced phonon splitting in strained MnO (0 0 1) films show that the exchange coupling could be enhanced by the compressive strain which supports recent theoretical predictions published by Wan et al (2016 Sci. Rep. 6 22743) and Fischer et al (2009 Phys. Rev. B 80 014408).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...