Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 14(26): 6281-8, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27270896

RESUMO

We developed a membrane-lytic peptide (LP) having 26 amino acid residues composed of a helix-promoting hydrophobic segment (Leu-Ala repetitive sequence) and a cationic segment from melittin. In the presence of liposomes, LP interacts with liposomal surfaces to form a hydrophobic helix in the lipid bilayer in a wide pH range. In order to provide LP with a weakly acidic (endosomal) pH-controlled membrane-lytic activity, we have designed an LPE peptide series (a typical peptide, LPE3-1) with a hydrophobic segment in which Leu (L) residues are replaced by acidic Glu (E) residues. To analyze the pH-selective membrane-lytic activity of the designed peptides, both calcein leakage and membrane accessibility assays were performed. In the case of membrane disruption induced by the active pore formation, the incorporated calcein would leak from the liposomes and simultaneously the aqueous solution in the membrane surrounding would be accessible to the liposome interior at pH 5.0. The assays in the presence of LPE3-1 indicated no significant leakage or accessibility at pH 7.4, but a typical leakage and some accessibility to liposomes were positively observed at pH 5.0. In order to estimate whether the weakly acidic pH-controlled lytic activity is due to a secondary structural change of the hydrophobic segment of LPE3-1 in the liposome membrane, we have measured circular dichroism spectra. In the presence of liposomes, the minimum showing the characteristic helical structure was observed at 222 nm only under weakly acidic conditions. This pH dependence is in good agreement with the results from the leakage and accessibility assays. The pH-dependent membrane disruption properties of LPE3-1 may open a new avenue to gain insight into the interaction between peptides and lipids for the development of efficient drug/gene delivery systems.


Assuntos
Meliteno/química , Peptídeos/química , Concentração de Íons de Hidrogênio , Peptídeos/síntese química
2.
Protein Sci ; 9(7): 1327-33, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10933497

RESUMO

We previously reported the de novo design of an amphiphilic peptide [YGG(IEKKIEA)4] that forms a native-like, parallel triple-stranded coiled coil. Starting from this peptide, we sought to regulate the assembly of the peptide by a metal ion. The replacement of the Ile18 and Ile22 residues with Ala and Cys residues, respectively, in the hydrophobic positions disrupted of the triple-stranded alpha-helix structure. The addition of Cd(II), however, resulted in the reconstitution of the triple-stranded alpha-helix bundle, as revealed by circular dichroism (CD) spectroscopy and sedimentation equilibrium analysis. By titration with metal ions and monitoring the change in the intensity of the CD spectra at 222 nm, the dissociation constant Kd was determined to be 1.5 +/- 0.8 microM for Cd(II). The triple-stranded complex formed by the 113Cd(II) ion showed a single 113Cd NMR resonance at 572 ppm whose chemical shift was not affected by the presence of Cl- ions. The 113Cd NMR resonance was connected with the betaH protons of the cysteine residue by 1H-113Cd heteronuclear multiple quantum correlation spectroscopy. These NMR results indicate that the three cysteine residues are coordinated to the cadmium ion in a trigonal-planar complex. Hg(II) also induced the assembly of the peptide into a triple-stranded alpha-helical bundle below the Hg(II)/peptide ratio of 1/3. With excess Hg(II), however, the alpha-helicity of the peptide was decreased, with the change of the Hg(II) coordination state from three to two. Combining this construct with other functional domains should facilitate the production of artificial proteins with functions controlled by metal ions.


Assuntos
Cádmio/metabolismo , Mercúrio/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Cádmio/química , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Mercúrio/química , Metaloproteínas/química , Metaloproteínas/metabolismo , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...