Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 150(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36458527

RESUMO

Ramified, polarized protoplasmic astrocytes interact with synapses via perisynaptic astrocyte processes (PAPs) to form tripartite synapses. These astrocyte-synapse interactions mutually regulate their structures and functions. However, molecular mechanisms for tripartite synapse formation remain elusive. We developed an in vitro co-culture system for mouse astrocytes and neurons that induced astrocyte ramifications and PAP formation. Co-cultured neurons were required for astrocyte ramifications in a neuronal activity-dependent manner, and synaptically-released glutamate and activation of astrocytic mGluR5 metabotropic glutamate receptor were likely involved in astrocyte ramifications. Astrocytic Necl2 trans-interacted with axonal Necl3, inducing astrocyte-synapse interactions and astrocyte functional polarization by recruiting EAAT1/2 glutamate transporters and Kir4.1 K+ channel to the PAPs, without affecting astrocyte ramifications. This Necl2/3 trans-interaction increased functional synapse number. Thus, astrocytic Necl2, synaptically-released glutamate and axonal Necl3 cooperatively formed tripartite glutamatergic synapses in vitro. Studies on hippocampal mossy fiber synapses in Necl3 knockout and Necl2/3 double knockout mice confirmed these previously unreported mechanisms for astrocyte-synapse interactions and astrocyte functional polarization in vivo.


Assuntos
Ácido Glutâmico , Sinapses , Camundongos , Animais , Sinapses/fisiologia , Camundongos Knockout , Ácido Glutâmico/farmacologia , Astrócitos/fisiologia , Fibras Musgosas Hipocampais
2.
Anat Sci Int ; 96(3): 343-358, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33459976

RESUMO

Neuronal circuits in the neocortex and hippocampus are essential for higher brain functions such as motor learning and spatial memory. In the mammalian forebrain, most excitatory synapses of pyramidal neurons are formed on spines, which are tiny protrusions extending from the dendritic shaft. The spine contains specialized molecular machinery that regulates synaptic transmission and plasticity. Spine size correlates with the efficacy of synaptic transmission, and spine morphology affects signal transduction at the post-synaptic compartment. Plasticity-related changes in the structural and molecular organization of spine synapses are thought to underlie the cellular basis of learning and memory. Recent advances in super-resolution microscopy have revealed the molecular mechanisms of the nanoscale synaptic structures regulating synaptic transmission and plasticity in living neurons, which are difficult to investigate using electron microscopy alone. In this review, we summarize recent advances in super-resolution imaging of spine synapses and discuss the implications of nanoscale structures in the regulation of synaptic function, learning, and memory.


Assuntos
Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Prosencéfalo/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Espinhas Dendríticas , Humanos , Microscopia
3.
eNeuro ; 6(5)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31515235

RESUMO

Traumatic brain injury (TBI) is one of the major causes of death and disability. Multiple animal models have been developed to explore therapeutic targets for TBI. However, heterogeneity of pathophysiology obstructs discovery of therapeutic targets. To facilitate understanding of TBI pathophysiology, each element of neuronal and glial responses should be studied separately. We focused on synapse remodeling which plays an important role in recovery from TBI and developed a new method, afferent elimination, for analyzing synapse remodeling after selective damage to presynaptic axons by mechanical transection in culture of mouse hippocampal neurons. Afferent elimination can induce various events related to synapse remodeling and we could determine their temporal orders and find relationships between them. Specifically, loss of presynaptic sites preceded loss of postsynaptic sites and spines. Some of the postsynaptic sites initially located inside spines showed translocation toward dendritic shafts. These translocation events started after the loss of contacting presynaptic sites. Also, these events could be blocked or delayed by NMDA receptor inhibition. Taken together, these findings suggest that postsynaptic changes occur in afferent elimination are NMDA dependent and imply that these NMDA-dependent events underlie synaptic remodeling of TBI.


Assuntos
Axônios/metabolismo , Espinhas Dendríticas/metabolismo , Densidade Pós-Sináptica/metabolismo , Terminações Pré-Sinápticas/metabolismo , Imagem com Lapso de Tempo/métodos , Animais , Células Cultivadas , Feminino , Hipocampo/citologia , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Sinapses/metabolismo
4.
Nat Commun ; 10(1): 1285, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894537

RESUMO

Dendritic spines are the postsynaptic sites that receive most of the excitatory synaptic inputs, and thus provide the structural basis for synaptic function. Here, we describe an accurate method for measurement and analysis of spine morphology based on structured illumination microscopy (SIM) and computational geometry in cultured neurons. Surface mesh data converted from SIM images were comparable to data reconstructed from electron microscopic images. Dimensional reduction and machine learning applied to large data sets enabled identification of spine phenotypes caused by genetic mutations in key signal transduction molecules. This method, combined with time-lapse live imaging and glutamate uncaging, could detect plasticity-related changes in spine head curvature. The results suggested that the concave surfaces of spines are important for the long-term structural stabilization of spines by synaptic adhesion molecules.


Assuntos
Espinhas Dendríticas/ultraestrutura , Hipocampo/ultraestrutura , Microscopia/estatística & dados numéricos , Neurônios/ultraestrutura , Imagem com Lapso de Tempo/estatística & dados numéricos , Animais , Carbocianinas/química , Conjuntos de Dados como Assunto , Espinhas Dendríticas/fisiologia , Embrião de Mamíferos , Corantes Fluorescentes/química , Ácido Glutâmico/metabolismo , Hipocampo/fisiologia , Aprendizado de Máquina , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Microscopia/métodos , Redução Dimensional com Múltiplos Fatores , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Cultura Primária de Células , Coloração e Rotulagem/métodos , Imagem com Lapso de Tempo/métodos
5.
Nat Commun ; 4: 1440, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23385585

RESUMO

Dendritic morphogenesis and formation of synapses at appropriate dendritic locations are essential for the establishment of proper neuronal connectivity. Recent imaging studies provide evidence for stabilization of dynamic distal branches of dendrites by the addition of new synapses. However, molecules involved in both dendritic growth and suppression of synapse maturation remain to be identified. Here we report two distinct functions of doublecortin-like kinases, chimeric proteins containing both a microtubule-binding domain and a kinase domain in postmitotic neurons. First, doublecortin-like kinases localize to the distal dendrites and promote their growth by enhancing microtubule bundling. Second, doublecortin-like kinases suppress maturation of synapses through multiple pathways, including reduction of PSD-95 by the kinase domain and suppression of spine structural maturation by the microtubule-binding domain. Thus, doublecortin-like kinases are critical regulators of dendritic development by means of their specific targeting to the distal dendrites, and their local control of dendritic growth and synapse maturation.


Assuntos
Dendritos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Sinapses/enzimologia , Animais , Animais Recém-Nascidos , Espinhas Dendríticas/enzimologia , Quinases Semelhantes a Duplacortina , Potenciais Pós-Sinápticos Excitadores , Técnicas de Silenciamento de Genes , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Fenótipo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Receptores de AMPA/metabolismo , Transdução de Sinais , Frações Subcelulares/enzimologia
6.
Nat Commun ; 3: 722, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22395613

RESUMO

Synaptic remodelling coordinated with dendritic growth is essential for proper development of neural connections. After establishment of synaptic contacts, synaptic junctions are thought to become stationary and provide fixed anchoring points for further dendritic growth. However, the possibility of active translocation of synapses along dendritic protrusions, to guide the proper arrangement of synaptic distribution, has not yet been fully investigated. Here we show that immature dendrites of γ-aminobutyric acid-positive interneurons form long protrusions and that these protrusions serve as conduits for retrograde translocation of synaptic contacts to the parental dendrites. This translocation process is dependent on microtubules and the activity of LIS1, an essential regulator of dynein-mediated motility. Suppression of this retrograde translocation results in disorganized synaptic patterns on interneuron dendrites. Taken together, these findings suggest the existence of an active microtubule-dependent mechanism for synaptic translocation that helps in the establishment of proper synaptic distribution on dendrites.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Dendritos/fisiologia , Interneurônios/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Sinapses/fisiologia , Transmissão Sináptica , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Aminobutiratos , Animais , Células Cultivadas , Dendritos/ultraestrutura , Dineínas/metabolismo , Interneurônios/ultraestrutura , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/fisiologia , Mutação , Densidade Pós-Sináptica/fisiologia , Densidade Pós-Sináptica/ultraestrutura , Pseudópodes/fisiologia , Pseudópodes/ultraestrutura , Interferência de RNA , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...