Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Benef Microbes ; 15(2): 145-164, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38412868

RESUMO

COVID-19 is caused by an airborne virus, SARS-CoV-2. The upper respiratory tract (URT) is, therefore, the first system to endure the attack. Inhabited by an assemblage of microbial communities, a healthy URT wards off the invasion. However, once invaded, it becomes destabilised, which could be crucial to the establishment and progression of the infection. We examined 696 URT samples collected from 285 COVID-19 patients at three time-points throughout their hospital stay and 100 URT samples from 100 healthy controls. We used 16S ribosomal RNA sequencing to evaluate the abundance of various bacterial taxa, α-diversity, and ß-diversity of the URT microbiome. Ordinary least squares regression was used to establish associations between the variables, with age, sex, and antibiotics as covariates. The URT microbiome in the COVID-19 patients was distinctively different from that of healthy controls. In COVID-19 patients, the abundance of 16 genera was significantly reduced. A total of 47 genera were specific to patients, whereas only 2 were unique to controls. The URT samples collected at admission differed more from the control than from the samples collected at later stages of treatment. The following four genera originally depleted in the patients grew significantly by the end of treatment: Fusobacterium, Haemophilus, Neisseria, and Stenotrophomonas. Our findings strongly suggest that SARS-CoV-2 caused significant changes in the URT microbiome, including the emergence of numerous atypical taxa. These findings may indicate increased instability of the URT microbiome in COVID-19 patients. In the course of the treatment, the microbial composition of the URT of COVID-19 patients tended toward that of controls. These microbial changes may be interpreted as markers of recovery.


Assuntos
Bactérias , COVID-19 , Microbiota , RNA Ribossômico 16S , Sistema Respiratório , SARS-CoV-2 , Humanos , COVID-19/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Idoso , SARS-CoV-2/genética , Sistema Respiratório/microbiologia , Sistema Respiratório/virologia , Adulto , Idoso de 80 Anos ou mais
2.
Front Aging Neurosci ; 15: 1273825, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953886

RESUMO

Background: Cognitive impairment is an irreversible, aging-associated condition that robs people of their independence. The purpose of this study was to investigate possible causes of this condition and propose preventive options. Methods: We assessed cognitive status in long-living adults aged 90+ (n = 2,559) and performed a genome wide association study using two sets of variables: Mini-Mental State Examination scores as a continuous variable (linear regression) and cognitive status as a binary variable (> 24, no cognitive impairment; <10, impairment) (logistic regression). Results: Both variations yielded the same polymorphisms, including a well-known marker of dementia, rs429358in the APOE gene. Molecular dynamics simulations showed that this polymorphism leads to changes in the structure of alpha helices and the mobility of the lipid-binding domain in the APOE protein. Conclusion: These changes, along with higher LDL and total cholesterol levels, could be the mechanism underlying the development of cognitive impairment in older adults. However, this polymorphism is not the only determining factor in cognitive impairment. The polygenic risk score model included 45 polymorphisms (ROC AUC 69%), further confirming the multifactorial nature of this condition. Our findings, particularly the results of PRS modeling, could contribute to the development of early detection strategies for predisposition to cognitive impairment in older adults.

3.
Kardiologiia ; 62(11): 63-70, 2022 Nov 30.
Artigo em Russo, Inglês | MEDLINE | ID: mdl-36521046

RESUMO

Aim    To study the adipokine profile in young people with hypercholesterolemia and low-density lipoproteins (LDL) and to evaluate the relationship between concentrations of LDL cholesterol (LDL-C) and metabolic hormones in men and women younger than 45 years. Material and methods    This study included 304 subjects (group 1, 56 men with LDL-C concentration <2.1 mmol/l; group 2, 87 men with LDL-C concentration ≥4.2 mmol/l; group 3, 90 women with LDL-C concentration <2.1 mmol/l; and group 4, 71 women with LDL-C concentration ≥4.2 mmol/l). Serum concentrations of total cholesterol (C), triglycerides (TG), high-density lipoprotein C, and glucose were measured by an enzymatic assay with ThermoFisher Scientific kits and a KonelabPrime 30i biochemical analyzer. LDL-C was calculated using the Friedewald's formula. Concentrations of amylin, C-peptide, ghrelin, glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1 (GLP-1), glucagon, interleukin 6, insulin, leptin, monocyte chemotactic protein 1 (MCP-1), pancreatic polypeptide (PP), peptide YY (PYY), tumor necrosis factor alpha (TNF-α), adiponectin, adipsin, lipocalin-2, plasminogen activator inhibitor 1 (PAI-1), and resistin were measured by multiplex analysis (Human Metabolic Hormone V3 and Human Adipokine Panel 1 panels).Results    The groups differed in traditional cardiometabolic risk factors. In the male and female patient groups with LDL-C ≥4.2 mmol/l, the prevalence of impaired fasting glucose, incidence of insulin resistance, TG, and TC were higher than in subjects with LDL-C <2.1 mmol/l. The odds for the presence of LDL hypercholesterolemia (LDL-C ≥4.2 mmol/l) were significantly associated with increased concentrations of C-peptide and lipocalin-2 in men and with increased concentrations of lipocalin-2 and decreased concentrations of GLP-1 in women (р<0.05).Conclusion    Increased concentrations of LDL-C in young people were associated with changes in the adipokine profile and with the presence of metabolic syndrome components. These results were confirmed by changes in blood concentrations of metabolic markers that characterize disorders of metabolic processes.


Assuntos
Hipercolesterolemia , Hiperlipidemias , Feminino , Masculino , Humanos , Adolescente , LDL-Colesterol , Hipercolesterolemia/complicações , Lipocalina-2 , Adipocinas , Peptídeo C , Triglicerídeos , Peptídeo 1 Semelhante ao Glucagon , Glucose
4.
Endocr Connect ; 4(3): 136-43, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26034119

RESUMO

It is known that glucose disturbances contribute to micro- and macrovascular complications and vascular aging. Telomere length is considered to be a cellular aging biomarker. It is important to determine the telomere length role in vascular structural and functional changes in patients with diabetes mellitus. We conducted a cross-sectional observational study in a high-risk population from Moscow, Russia. The study included 50 patients with diabetes and without clinical cardiovascular disease and 49 control group participants. Glucose metabolism assessment tests, measuring intima-media complex thickness and determining the presence of atherosclerotic plaques, pulse wave velocity measurement, and telomere length measurement were administered to all participants. Vascular changes were more dramatic in patients with diabetes than in the control group, and the telomeres were shorter in patients with diabetes. Significant differences were found in the vascular wall condition among diabetes patients, and there were no substantial differences in the arterial structure between patients with 'long' telomeres; however, there were statistically significant differences in the vascular wall condition between patients with 'short' telomeres. Vascular ageing signs were more prominent in patients with diabetes. However, despite diabetes, vascular changes in patients with long telomeres were very modest and were similar to the vascular walls in healthy individuals. Thus, long lymphocyte telomeres may have a protective effect on the vascular wall and may prevent vascular wall deterioration caused by glucose metabolism disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...