Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2722: 117-127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37897604

RESUMO

Plant vascular pathogens use different ways to reach the xylem vessels and cause devastating diseases in plants. Resistant and tolerant plants have evolved various defense mechanisms against vascular pathogens. Inducible physico-chemical structures, such as the formation of tyloses and wall reinforcements with phenolic polymers, are very effective barriers that confine the pathogen and prevent colonization. Here, we use a combination of classical histochemistry along with bright-field and fluorescence microscopy and two-dimensional nuclear magnetic resonance (2D-NMR) spectroscopy to visualize and characterize wall reinforcements containing phenolic wall polymers, namely, lignin, ferulates, and suberin, which occur in different xylem vasculature in response to pathogen attack.


Assuntos
Lignina , Lipídeos , Lignina/análise , Lipídeos/análise , Plantas , Xilema/química , Parede Celular
2.
Mol Divers ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749454

RESUMO

Covid-19 was declared a world pandemic. Recent studies demonstrated that Covid-19 impairs CNS activity by crossing the blood-brain barrier and ensuing cognitive impairment. In this study, we have utilized Covid-19 main protease (Mpro) as a biological target to repurpose our previously reported multifunctional compounds targeting Alzheimer's disease. Molecular docking, spatial orientation, molecular dynamics simulation, MM-GBSA energy calculation, and DFT studies were carried out with these molecules. Among all the compounds, F27, F44, and F56 exhibited higher binding energy (- 8.03, - 8.65, and - 8.68 kcal/mol, respectively) over the co-crystal ligand O6K (- 7.00 kcal/mol). In MD simulation, compounds F27, F44, and F56 could make a stable complex with Mpro target throughout the simulation. The compounds were synthesized following reported methods and subjected for cytotoxicity, and assessment of their capability to cross the blood-brain barrier in PAMPA assay, and antioxidant property evaluation through DPPH assay. The compounds F27, F44, and F56 exhibited cytocompatibility with the SiHA cell line and also displayed significant antioxidant properties with IC50 = 45.80 ± 0.27 µM, 44.42 ± 0.30 µM, and 42.74 ± 0.23 µM respectively. In the PAMPA assays, the permeability coefficient (Pe) value of F27, F44, and F56 lies in the acceptable range (Pe > 4). The results of the computational and preliminary in-vitro studies strongly corroborate the potential of F27, F44, and F56 as a lead for further optimization in treating the CNS complications associated with Covid-19.

3.
Indian J Ophthalmol ; 71(6): 2379-2384, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37322647

RESUMO

Cataract is the leading cause of blindness worldwide. There is an increased incidence of cataract formation in the diabetic population due to several factors. Diabetes mellitus accelerates the development of cataract. Oxidative stress results in most of the diabetic complications including diabetic cataract. Oxidative stress leading to the expression of various enzymes has also been proven as crucial for cataractous changes in the lens in old age. A narrative review was undertaken to investigate the expression of different biochemical parameters as well as enzymes in diabetic and senile cataracts. Identification of these parameters is crucial for the prevention and treatment of blindness. Combinations of MeSH terms and key words were used to do literature search in PubMed. The search resulted 35 articles and among them, 13 were relevant to the topic and were included in synthesis of results. Seventeen different types of enzymes were identified in the senile and diabetic cataracts. Seven biochemical parameters were also identified. Alteration in biochemical parameters and expression of enzymes were comparable. Majority of the parameters were raised or altered in diabetic cataract compared to senile cataract.


Assuntos
Catarata , Complicações do Diabetes , Diabetes Mellitus , Cristalino , Humanos , Catarata/etiologia , Complicações do Diabetes/complicações , Complicações do Diabetes/metabolismo , Diabetes Mellitus/epidemiologia , Cegueira
4.
Plants (Basel) ; 12(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176949

RESUMO

As a wall polymer, suberin has a multifaceted role in plant development and stress responses. It is deposited between the plasma membrane and the primary cell wall in specialized tissues such as root exodermis, endodermis, phellem, and seed coats. It is formed de novo in response to stresses such as wounding, salt injury, drought, and pathogen attack and is a complex polyester mainly consisting of fatty acids, glycerol, and minor amounts of ferulic acid that are associated to a lignin-like polymer predominantly composed of ferulates. Metabolomic and transcriptomic studies have revealed that cell wall lignification precedes suberin deposition. The ferulic acid esterified to ω-hydroxy fatty acids, synthetized by the feruloyl transferase FHT (or ASFT), presumably plays a role in coupling both polymers, although the precise mechanism is not understood. Here, we use the promoter of tomato suberin feruloyl transferase (FHT/ASFT) fused to GUS (ß-glucuronidase) to demonstrate that ferulate deposition agrees with the site of promoter FHT activation by using a combination of histochemical staining and UV microscopy. Hence, FHT promoter activation and alkali UV microscopy can be used to identify the precise localization of early suberizing cells rich in ferulic acid and can additionally be used as an efficient marker of early suberization events during plant development and stress responses. This line can be used in the future as a tool to identify emerging suberization sites via ferulate deposition in tomato plants, which may contribute to germplasm screening in varietal improvement programs.

5.
Funct Integr Genomics ; 22(6): 1403-1410, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36109405

RESUMO

Knowledgebase for rice sheath blight information (KRiShI) is a manually curated user-friendly knowledgebase for rice sheath blight (SB) disease that allows users to efficiently mine, visualize, search, benchmark, download, and update meaningful data and information related to SB using its easy and interactive interface. KRiShI collects and integrates widely scattered and unstructured information from various scientific literatures, stores it under a single window, and makes it available to the community in a user-friendly manner. From basic information, best management practices, host resistance, differentially expressed genes, proteins, metabolites, resistance genes, pathways, and OMICS scale experiments, KRiShI presents these in the form of easy and comprehensive tables, diagrams, and pictures. The "Search" tab allows users to verify if their input rice gene id(s) are Rhizoctonia solani (R. solani) responsive and/or resistant. KRiShI will serve as a valuable resource for easy and quick access to data and information related to rice SB disease for both the researchers and the farmers. To encourage community curation a submission facility is made available. KRiShI can be found at http://www.tezu.ernet.in/krishi .


Assuntos
Oryza , Oryza/genética , Doenças das Plantas/genética , Bases de Conhecimento
8.
New Phytol ; 234(4): 1411-1429, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35152435

RESUMO

Tomato varieties resistant to the bacterial wilt pathogen Ralstonia solanacearum have the ability to restrict bacterial movement in the plant. Inducible vascular cell wall reinforcements seem to play a key role in confining R. solanacearum into the xylem vasculature of resistant tomato. However, the type of compounds involved in such vascular physico-chemical barriers remain understudied, while being a key component of resistance. Here we use a combination of histological and live-imaging techniques, together with spectroscopy and gene expression analysis to understand the nature of R. solanacearum-induced formation of vascular coatings in resistant tomato. We describe that resistant tomato specifically responds to infection by assembling a vascular structural barrier formed by a ligno-suberin coating and tyramine-derived hydroxycinnamic acid amides. Further, we show that overexpressing genes of the ligno-suberin pathway in a commercial susceptible variety of tomato restricts R. solanacearum movement inside the plant and slows disease progression, enhancing resistance to the pathogen. We propose that the induced barrier in resistant plants does not only restrict the movement of the pathogen, but may also prevent cell wall degradation by the pathogen and confer anti-microbial properties, effectively contributing to resistance.


Assuntos
Ralstonia solanacearum , Solanum lycopersicum , Amidas/metabolismo , Ácidos Cumáricos/metabolismo , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Tiramina/metabolismo , Virulência
9.
Front Plant Sci ; 12: 755708, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868145

RESUMO

Ralstonia solanacearum causes bacterial wilt, a devastating plant disease, responsible for serious losses on many crop plants. R. solanacearum phylotype II-B1 strains have caused important outbreaks in temperate regions, where the pathogen has been identified inside asymptomatic bittersweet (Solanum dulcamara) plants near rivers and in potato fields. S. dulcamara is a perennial species described as a reservoir host where R. solanacearum can overwinter, but their interaction remains uncharacterised. In this study, we have systematically analysed R. solanacearum infection in S. dulcamara, dissecting the behaviour of this plant compared with susceptible hosts such as tomato cv. Marmande, for which the interaction is well described. Compared with susceptible tomatoes, S. dulcamara plants (i) show delayed symptomatology and bacterial progression, (ii) restrict bacterial movement inside and between xylem vessels, (iii) limit bacterial root colonisation, and (iv) show constitutively higher lignification in the stem. Taken together, these results demonstrate that S. dulcamara behaves as partially resistant to bacterial wilt, a property that is enhanced at lower temperatures. This study proves that tolerance (i.e., the capacity to reduce the negative effects of infection) is not required for a wild plant to act as a reservoir host. We propose that inherent resistance (impediment to colonisation) and a perennial habit enable bittersweet plants to behave as reservoirs for R. solanacearum.

10.
BMC Biol ; 19(1): 161, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404410

RESUMO

BACKGROUND: Cell walls (CWs) are protein-rich polysaccharide matrices essential for plant growth and environmental acclimation. The CW constitutes the first physical barrier as well as a primary source of nutrients for microbes interacting with plants, such as the vascular pathogen Fusarium oxysporum (Fo). Fo colonizes roots, advancing through the plant primary CWs towards the vasculature, where it grows causing devastation in many crops. The pathogenicity of Fo and other vascular microbes relies on their capacity to reach and colonize the xylem. However, little is known about the root-microbe interaction before the pathogen reaches the vasculature and the role of the plant CW during this process. RESULTS: Using the pathosystem Arabidopsis-Fo5176, we show dynamic transcriptional changes in both fungus and root during their interaction. One of the earliest plant responses to Fo5176 was the downregulation of primary CW synthesis genes. We observed enhanced resistance to Fo5176 in Arabidopsis mutants impaired in primary CW cellulose synthesis. We confirmed that Arabidopsis roots deposit lignin in response to Fo5176 infection, but we show that lignin-deficient mutants were as susceptible as wildtype plants to Fo5176. Genetic impairment of jasmonic acid biosynthesis and signaling did not alter Arabidopsis response to Fo5176, whereas impairment of ethylene signaling did increase vasculature colonization by Fo5176. Abolishing ethylene signaling attenuated the observed resistance while maintaining the dwarfism observed in primary CW cellulose-deficient mutants. CONCLUSIONS: Our study provides significant insights on the dynamic root-vascular pathogen interaction at the transcriptome level and the vital role of primary CW cellulose during defense response to these pathogens. These findings represent an essential resource for the generation of plant resistance to Fo that can be transferred to other vascular pathosystems.


Assuntos
Arabidopsis , Arabidopsis/genética , Parede Celular , Celulose , Mecanismos de Defesa , Etilenos , Fusarium , Regulação da Expressão Gênica de Plantas , Lignina , Doenças das Plantas/genética , Transcriptoma
11.
J Exp Bot ; 72(2): 184-198, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32976552

RESUMO

Xylem vascular wilt pathogens cause devastating diseases in plants. Proliferation of these pathogens in the xylem causes massive disruption of water and mineral transport, resulting in severe wilting and death of the infected plants. Upon reaching the xylem vascular tissue, these pathogens multiply profusely, spreading vertically within the xylem sap, and horizontally between vessels and to the surrounding tissues. Plant resistance to these pathogens is very complex. One of the most effective defense responses in resistant plants is the formation of physico-chemical barriers in the xylem tissue. Vertical spread within the vessel lumen is restricted by structural barriers, namely, tyloses and gels. Horizontal spread to the apoplast and surrounding healthy vessels and tissues is prevented by vascular coating of the colonized vessels with lignin and suberin. Both vertical and horizontal barriers compartmentalize the pathogen at the infection site and contribute to their elimination. Induction of these defenses are tightly coordinated, both temporally and spatially, to avoid detrimental consequences such as cavitation and embolism. We discuss current knowledge on mechanisms underlying plant-inducible structural barriers against major xylem-colonizing pathogens. This knowledge may be applied to engineer metabolic pathways of vascular coating compounds in specific cells, to produce plants resistant towards xylem colonizers.


Assuntos
Doenças das Plantas , Solanum lycopersicum , Xilema
12.
J Exp Bot ; 71(6): 2157-2171, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32211785

RESUMO

Ralstonia solanacearum is a bacterial vascular pathogen causing devastating bacterial wilt. In the field, resistance against this pathogen is quantitative and is available for breeders only in tomato and eggplant. To understand the basis of resistance to R. solanacearum in tomato, we investigated the spatio-temporal dynamics of bacterial colonization using non-invasive live monitoring techniques coupled to grafting of susceptible and resistant varieties. We found four 'bottlenecks' that limit the bacterium in resistant tomato: root colonization, vertical movement from roots to shoots, circular vascular bundle invasion, and radial apoplastic spread in the cortex. Radial invasion of cortical extracellular spaces occurred mostly at late disease stages but was observed throughout plant infection. This study shows that resistance is expressed in both root and shoot tissues, and highlights the importance of structural constraints to bacterial spread as a resistance mechanism. It also shows that R. solanacearum is not only a vascular pathogen but spreads out of the xylem, occupying the plant apoplast niche. Our work will help elucidate the complex genetic determinants of resistance, setting the foundations to decipher the molecular mechanisms that limit pathogen colonization, which may provide new precision tools to fight bacterial wilt in the field.


Assuntos
Ralstonia solanacearum , Solanum lycopersicum , Solanum melongena , Doenças das Plantas , Xilema
13.
Proc Natl Acad Sci U S A ; 109(52): 21289-94, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23236138

RESUMO

North American porcupines are well known for their specialized hairs, or quills that feature microscopic backward-facing deployable barbs that are used in self-defense. Herein we show that the natural quill's geometry enables easy penetration and high tissue adhesion where the barbs specifically contribute to adhesion and unexpectedly, dramatically reduce the force required to penetrate tissue. Reduced penetration force is achieved by topography that appears to create stress concentrations along regions of the quill where the cross sectional diameter grows rapidly, facilitating cutting of the tissue. Barbs located near the first geometrical transition zone exhibit the most substantial impact on minimizing the force required for penetration. Barbs at the tip of the quill independently exhibit the greatest impact on tissue adhesion force and the cooperation between barbs in the 0-2 mm and 2-4 mm regions appears critical to enhance tissue adhesion force. The dual functions of barbs were reproduced with replica molded synthetic polyurethane quills. These findings should serve as the basis for the development of bio-inspired devices such as tissue adhesives or needles, trocars, and vascular tunnelers where minimizing the penetration force is important to prevent collateral damage.


Assuntos
Estruturas Animais/anatomia & histologia , Estruturas Animais/fisiologia , Músculos/fisiologia , Porcos-Espinhos/anatomia & histologia , Fenômenos Fisiológicos da Pele , Adesividade , Animais , Fenômenos Biomecânicos , Humanos , América do Norte , Permeabilidade , Aves Domésticas , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...