Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-26290079

RESUMO

The aim of the present investigation was to synthesize, characterize and evaluate analgesic and anti- inflammatory activities of 2, 5-disubstituted 1, 3, 4-oxadiazole derivatives. The reaction of starting material 4-chloro-m-cresol with ethyl chloroacetate in dry acetone affords ethyl (4-chloro-3-methylphenoxy) acetate, which after reacting with the hydrazine hydrate in ethanol yields 2(4-chloro-3-methylphenoxy) acetohydrazide. When 2(4-chloro-3-methylphenoxy) acetohydrazide was treated with different aromatic aldehydes, aromatic acids and carbon disulfide in alcoholic solution, different 3-acetyl-5-[(4-chloro-3-methylphenoxy) methyl]-2-aryl-2, 3-dihydro-1, 3, 4-oxadiazole and 2-[(4-chloro-3-methylphenoxy) methyl]-5-aryl-1, 3, 4-oxadiazole derivatives were obtained. Purity of the derivatives was confirmed by thin layer chromatography and melting point. Structure of these derivatives was set up by determining infrared spectroscopy, nuclear magnetic resonance spectroscopy and mass spectroscopy. Further, the synthesized derivatives were evaluated for their analgesic and anti-inflammatory activities in rodents. In animal studies, the derivatives 3-acetyl-5-[(4-chloro-3- methylphenoxy)methyl]-2-(4-methoxyphenyl)-2,3-dihydro-1, 3, 4-oxadiazole and 4-{5-[(4-chloro-3- methylphenoxy)methyl]-1, 3, 4-oxadiazol-2-yl}pyridine show more potent analgesic activity and the derivatives 2-{3-acetyl-5-[(4-chloro-3-methylphenoxy)methyl]-2,3-dihydro-1, 3, 4-oxadiazol-2-yl}phenol and 3-acetyl-5- [(4-chloro-3-methylphenoxy)methyl]-2-(4-methoxyphenyl)-2,3-dihydro-1, 3, 4-oxadiazole exhibit more potent anti-inflammatory effect as compared to other derivatives. The results of the current study indicate that cyclization of acetohydrazide produces novel oxadiazole derivatives with potent analgesic and anti-inflammatory activities.


Assuntos
Analgésicos/química , Analgésicos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Oxidiazóis/química , Oxidiazóis/farmacologia , Analgésicos/síntese química , Animais , Anti-Inflamatórios/síntese química , Cromatografia em Camada Fina , Espectroscopia de Ressonância Magnética , Masculino , Espectrometria de Massas , Camundongos , Oxidiazóis/síntese química , Ratos , Ratos Sprague-Dawley , Espectrofotometria Infravermelho , Relação Estrutura-Atividade
2.
Curr Drug Deliv ; 10(5): 587-600, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23607638

RESUMO

Xanthan gum is a high molecular weight natural polysaccharide produced by fermentation process. It consists of 1, 4-linked ß-D-glucose residues, having a trisaccharide side chain attached to alternate D-glucosyl residues. Although the gum has many properties desirable for drug delivery, its practical use is mainly confined to the unmodified forms due to slow dissolution and substantial swelling in biological fluids. Xanthan gum has been chemically modified by conventional chemical methods like carboxymethylation, and grafting such as free radical, microwave-assisted, chemoenzymatic and plasma assisted chemical grafting to alter physicochemical properties for a wide spectrum of biological applications. This article reviews various techniques utilized for modification of xanthan gum and its applications in a range of drug delivery systems.


Assuntos
Biopolímeros/química , Sistemas de Liberação de Medicamentos , Polissacarídeos Bacterianos/química , Vias de Administração de Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...