Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 139: 181-186, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29800927

RESUMO

This work demonstrates the development of diamond sensors with reliable contacts using a new metallization formula, which can operate under high-pressure gas environment. The metallization was created using thin film layers of titanium, platinum, gold and nickel deposited on a single crystal electronic grade CVD diamond chip. The contacts were 2 mm in diameter with thickness of 50/5/20/150 nm of Ti:Pt:Au:Ni. The optimum operating voltage of the sensor was determined from the current-voltage measurements. The sensor was calibrated with 239Pu and 241Am alpha radiation sources at 300 V. The energy resolution of the Ti:Pt:Au:Ni diamond sensor was determined to be 7.6% at 5.2 MeV of 239Pu and 2.2% at 5.48 MeV of 241Am. The high-pressure gas loading environment under which this sensor was used is discussed. Specifically, experimental observations are described using hydrogen loading of nickel as a means of initiating low energy nuclear reactions. No neutrons, electrons, ions or other ionizing radiations were observed in these experiments.

2.
Appl Radiat Isot ; 139: 66-69, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29729483

RESUMO

This paper demonstrates the ability of diamond sensors to respond to beta radiation. A Chemical Vapor Deposition (CVD) single crystal diamond was used in this work. The diamond crystal has a dimension of 4.5×4.5 by 0.5 mm thick. Metal contacts were fabricated on both sides of the diamond using titanium and palladium metals with thicknesses of 50 nm and 150 nm, respectively. The energy response of the diamond sensor was experimentally measured using three beta isotopes that cover the entire range of beta energy: 147Pm, a weak beta radiation with a maximum energy of 0.225 MeV, 2°4Tl, a medium energy beta radiation with a maximum energy of 0.763 MeV, and 9°Sr/9°Y, with both a medium energy beta radiation with a maximum energy of 0.546 MeV, and a high energy beta radiation with a maximum energy of 2.274 MeV. The beta measurements indicate that diamond sensors are sensitive to beta radiation and are suitable for beta spectroscopy. This is important in estimating dose since diamond is tissue equivalent, and the absorbed dose is easily determined from the energy and the mass of the active volume. The high energy betas from 2°4Tl and 90Sr/90Y penetrates the sensor without depositing sufficient energy in the active area because their range is larger than the thickness of sensor. The sensitivity of the detector is limited because of its small volume and can be improved by combining smaller area sensors since growing large size diamond is currently a challenge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA