Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276820

RESUMO

BackgroundA fraction of COVID-19 patients develops severe disease requiring hospitalization, while the majority, including high-risk individuals, experience mild symptoms. Severe disease has been associated with higher levels of antibodies and inflammatory cytokines, but the association has often resulted from comparison of patients with diverse demographics and comorbidity status. This study examined patients with defined demographic risk factors for severe COVID-19 who developed mild vs. severe COVID-19. MethodsThis study evaluated hospitalized vs. ambulatory COVID-19 patients in the James J. Peters VA Medical Center, Bronx, NY. This cohort presented demographic risk factors for severe COVID-19: median age of 63, >80% male, >85% black and/or Hispanic. Sera were collected four to 243 days after symptom onset and evaluated for binding and functional antibodies as well as 48 cytokines/chemokines. FindingsAmbulatory and hospitalized patients showed no difference in SARS-CoV-2-specific antibody levels and functions. However, a strong correlation between anti-S2 antibody levels and the other antibody parameters was observed in hospitalized but not in ambulatory cases. Cytokine/chemokine levels also revealed differences, with notably higher IL-27 levels in hospitalized patients. Hence, among the older, mostly male patients studied here, SARS-CoV-2-specific antibody levels and functions did not distinguish hospitalized and ambulatory cases but a discordance in S2-specific antibody responses was noted in ambulatory patients, and elevated levels of specific cytokines were maintained in convalescent sera of hospitalized cases. InterpretationThe data indicate that antibodies against the relatively conserved S2 spike subunit and immunoregulatory cytokines such as IL-27 are potential immune determinants of COVID-19. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSPrevious studies demonstrated that high levels of SARS-CoV-2 spike binding antibodies and neutralizing antibodies were associated with COVID-19 disease severity. However, the comparisons were often made without considering demographics and comorbidities. Correlation was similarly shown between severe disease and marked elevation of several plasma cytokines but again, most analyses of cytokine responses to COVID-19 were conducted by comparison of patient cohorts with diverse demographic characteristics and risk factors. Added value of this studyWe evaluated here a comprehensive profile of SARS-CoV-2-specific antibodies (total Ig, isotypes/subtypes, Fab- and Fc-mediated functions) and a panel of 48 cytokines and chemokines in serum samples from a cohort of SARS-CoV-2-infected patients with demographic risk factors for severe COVID-19: 81% were male, 79% were >50 years old (median of 63), and 85% belonged to US minority groups (black and/or Hispanic). Comparison of hospitalized vs. ambulatory patients within this cohort revealed two features that differed between severe vs. mild COVID-19 cases: a discordant Ab response to the S2 subunit of the viral spike protein in the mild cases and an elevated response of specific cytokines and chemokines, notably IL-27, in the severe cases. Implications of all the available evidenceData from the study identified key immunologic markers for severe vs. mild COVID-19 that provide a path forward for investigations of their roles in minimizing or augmenting disease severity.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21254660

RESUMO

The novel pandemic betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected at least 120 million people since its identification as the cause of a December 2019 viral pneumonia outbreak in Wuhan, China. Despite the unprecedented pace of vaccine development, with six vaccines already in use worldwide, the emergence of SARS-CoV-2 variants of concern (VOC) across diverse geographic locales suggests herd immunity may fail to eliminate the virus. All three officially designated VOC carry Spike (S) polymorphisms thought to enable escape from neutralizing antibodies elicited during initial waves of the pandemic. Here, we characterize the biological consequences of the ensemble of S mutations present in VOC lineages B.1.1.7 (501Y.V1) and B.1.351 (501Y.V2). Using a replication-competent EGFP-reporter vesicular stomatitis virus (VSV) system, rcVSV-CoV2-S, which encodes S from SARS coronavirus 2 in place of VSV-G, and coupled with a clonal HEK-293T ACE2 TMPRSS2 cell line optimized for highly efficient S-mediated infection, we determined that 8 out of 12 (75%) of serum samples from 12 recipients of the Russian Sputnik V Ad26 / Ad5 vaccine showed dose response curve slopes indicative of failure to neutralize rcVSV-CoV2-S: B.1.351. The same set of sera efficiently neutralized S from B.1.1.7 and showed only moderately reduced activity against S carrying the E484K substitution alone. Taken together, our data suggest that control of emergent SARS-CoV-2 variants may benefit from updated vaccines.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253731

RESUMO

Approximately 10% of infants will experience COVID-19 illness requiring advanced care (1). A potential mechanism to protect this population could be provided by passive immunity through the milk of a previously infected mother. We and others have reported on the presence of SARS-CoV-2-specific antibodies in human milk (2-5). We now report the prevalence of SARS-CoV-2 IgA in the milk of 75 COVID-19-recovered participants, and find that 88% of samples are positive for Spike-specific IgA. In a subset of these samples, 95% exhibited robust IgA activity as determined by endpoint binding titer, with 50% considered high-titer. These IgA positive specimens were also positive for Spike-specific antibodies bearing the secretory component. Levels of IgA antibodies and antibodies bearing secretory component were shown to be strongly positively correlated. The secretory IgA response was dominant among the milk samples tested compared to the IgG response, which was present in 75% of samples and found to be of high-titer in only 13% of cases. Our IgA durability analysis using 28 paired samples, obtained 4-6 weeks and 4-10 months after infection, found that all samples exhibited persistently significant Spike-specific IgA, with 43% of donors exhibiting increasing IgA titers over time. Finally, COVID-19 and pre-pandemic control milk samples were tested for the presence of neutralizing antibodies; 6 of 8 COVID-19 samples exhibited neutralization of Spike-pseudotyped VSV (IC50 range, 2.39 - 89.4ug/mL) compared to 1 of 8 controls. IgA binding and neutralization capacities were found to be strongly positively correlated. These data are highly relevant to public health, not only in terms of the protective capacity of these antibodies for breastfed infants, but also for the potential use of such antibodies as a COVID-19 therapeutic, given that secretory IgA is highly stable not only in milk and the infant mouth and gut, but in all mucosa including the gastrointestinal tract, upper airway, and lungs (6).

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20216960

RESUMO

We report the emergency development and application of a robust serologic test to evaluate acute and convalescent antibody responses to SARS-CoV-2 in Argentina. The assays, COVIDAR IgG and IgM, which were produced and provided for free to health authorities, private and public health institutions and nursing homes, use a combination of a trimer stabilized spike protein and the receptor binding domain (RBD) in a single enzyme-linked immunosorbent assay (ELISA) plate. Over half million tests have already been distributed to detect and quantify antibodies for multiple purposes, including assessment of immune responses in hospitalized patients and large seroprevalence studies in neighborhoods, slums and health care workers, which resulted in a powerful tool for asymptomatic detection and policy making in the country. Analysis of antibody levels and longitudinal studies of symptomatic and asymptomatic SARS-CoV-2 infections in over one thousand patient samples provided insightful information about IgM and IgG seroconversion time and kinetics, and IgM waning profiles. At least 35% of patients showed seroconversion within 7 days, and 95% within 45 days of symptoms onset, with simultaneous or close sequential IgM and IgG detection. Longitudinal studies of asymptomatic cases showed a wide range of antibody responses with median levels below those observed in symptomatic patients. Regarding convalescent plasma applications, a protocol was standardized for the assessment of end point IgG antibody titers with COVIDAR with more than 500 plasma donors. The protocol showed a positive correlation with neutralizing antibody titers, and was used to assess antibody titers for clinical trials and therapies across the country. Here, we demonstrate the importance of providing a robust and specific serologic assay for generating new information about antibody kinetics in infected individuals and mitigation policies to cope with pandemic needs. AUTHOR SUMMARYThe development of robust and specific serologic assays to detect antibodies to SARS-CoV-2 is essential to understand the pandemic evolution and to stablish mitigation strategies. Here, we report the emergency development, production and application of a versatile ELISA test for detecting antibodies against the whole spike protein and its receptor binding domain. Over half million tests have been freely distributed in public and private health institutions of Argentina for evaluating immune responses, convalescent plasma programs and for large seroprevalence studies in neighborhoods and health care workers. We are still learning how and when to use serologic testing in different epidemiological settings. This program allowed us to produce large amount of high quality data on antibody levels in symptomatic and asymptomatic SARS-CoV-2 infections and generate relevant information about IgM and IgG seroconversion time and kinetics. We also present standardized protocols for antibody quantification as guidance for convalescent donor plasma selection in hospitals throughout the country for compassionate use and clinical trials. Here, we provide a framework for generating widely available tools, protocols and information of antibody responses for pandemic management.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20177303

RESUMO

SARS-CoV-2 has infected millions of people and is on a trajectory to kill more than one million globally. Virus entry depends on the receptor-binding domain (RBD) of the spike protein. Although previous studies demonstrated anti-spike and -RBD antibodies as essential for protection and convalescent plasma as a promising therapeutic option, little is known about the immunoglobulin (Ig) isotypes capable of blocking virus entry. Here, we studied spike- and RBD-specific Ig isotypes in plasma/sera from two acutely infected and 29 convalescent individuals. Spike- and RBD-specific IgM, IgG1, and IgA1 antibodies were produced by all or nearly all subjects at varying levels and detected at 7-8 days post-disease onset. IgG2, IgG3, IgG4, and IgA2 were also present but at much lower levels. All samples also displayed neutralizing activity. IgM, IgG, and IgA were capable of mediating neutralization, but neutralization titers correlated better with binding levels of IgM and IgA1 than IgG.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20157222

RESUMO

The global COVID-19 pandemic has mobilized efforts to develop vaccines and antibody-based therapeutics, including convalescent plasma therapy, that inhibit viral entry by inducing or transferring neutralizing antibodies (nAbs) against the SARS-CoV-2 spike glycoprotein (CoV2-S). However, rigorous efficacy testing requires extensive screening with live virus under onerous BSL3 conditions which limits high throughput screening of patient and vaccine sera. Myriad BSL-2 compatible surrogate virus neutralization assays (VNAs) have been developed to overcome this barrier. Yet, there is marked variability between VNAs and how their results are presented, making inter-group comparisons difficult. To address these limitations, we developed a standardized VNA using VSVAG-based CoV-2-S pseudotyped particles (CoV2pp) that can be robustly produced at scale and generate accurate neutralizing titers within 18 hours post-infection. Our standardized CoV2pp VNA showed a strong positive correlation with CoV2-S ELISA and live virus neutralizations in confirmed convalescent patient sera. Three independent groups subsequently validated our standardized CoV2pp VNA (n>120). Our data show that absolute (abs) IC50, IC80, and IC90 values can be legitimately compared across diverse cohorts, highlight the substantial but consistent variability in neutralization potency across these cohorts, and support the use of absIC80 as a more meaningful metric for assessing the neutralization potency of vaccine or convalescent sera. Lastly, we used our CoV2pp in a screen to identify ultra-permissive 293T clones that stably express ACE2 or ACE2+TMPRSS2. When used in combination with our CoV2pp, we can now produce CoV2pp sufficient for 150,000 standardized VNA/week. ImportanceVaccines and antibody-based therapeutics like convalescent plasma therapy are premised upon inducing or transferring neutralizing antibodies that inhibit SARS-CoV-2 entry into cells. Virus neutralization assays (VNAs) for measuring neutralizing antibody titers (NATs) is an essential part of determining vaccine or therapeutic efficacy. However, such efficacy testing is limited by the inherent dangers of working with the live virus, which requires specialized high-level biocontainment facilities. We therefore developed a standardized replication-defective pseudotyped particle system that mimics entry of live SARS-CoV-2. This tool allows for the safe and efficient measurement of NATs, determination of other forms of entry inhibition, and thorough investigation of virus entry mechanisms. Four independent labs across the globe validated our standardized VNA using diverse cohorts. We argue that a standardized and scalable assay is necessary for meaningful comparisons of the myriad of vaccines and antibody-based therapeutics becoming available. Our data provide generalizable metrics for assessing their efficacy.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-248880

RESUMO

Entry of SARS-CoV-2 is facilitated by endogenous and exogenous proteases. These proteases proteolytically activate the SARS-CoV-2 spike glycoprotein and are key modulators of virus tropism. We show that SARS-CoV-2 naive serum exhibits significant inhibition of SARS-CoV-2 entry. We identify alpha-1-antitrypsin (AAT) as the major serum protease inhibitor that potently restrict protease-mediated entry of SARS-CoV-2. AAT inhibition of protease-mediated SARS-CoV-2 entry in vitro occurs at concentrations far below what is present in serum and bronchoalveolar tissues, suggesting that AAT effects are physiologically relevant. Moreover, AAT deficiency affects up to 20% of the population and its symptomatic manifestations coincides with many risk factors associated with severe COVID-19 disease. In addition to the effects that AAT may have on viral entry itself, we argue that the anti-inflammatory and coagulation regulatory activity of AAT have implications for coronavirus disease 2019 (COVID-19) pathogenicity, SARS-CoV-2 tissue restriction, convalescent plasma therapies, and even potentially AAT therapy.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-199687

RESUMO

To interfere with the biology of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, we focused on restoring the transcriptional response induced by infection. Utilizing expression patterns of SARS-CoV-2-infected cells, we identified a region in gene expression space that was unique to virus infection and inversely proportional to the transcriptional footprint of known compounds characterized in the Library of Integrated Network-based Cellular Signatures. Here we demonstrate the successful identification of compounds that display efficacy in blocking SARS-CoV-2 replication based on their ability to counteract the virus-induced transcriptional landscape. These compounds were found to potently reduce viral load despite having no impact on viral entry or modulation of the host antiviral response in the absence of virus. RNA-Seq profiling implicated the induction of the cholesterol biosynthesis pathway as the underlying mechanism of inhibition and suggested that targeting this aspect of host biology may significantly reduce SARS-CoV-2 viral load.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-155101

RESUMO

Identification of host genes essential for SARS-CoV-2 infection may reveal novel therapeutic targets and inform our understanding of COVID-19 pathogenesis. Here we performed a genome-wide CRISPR screen with SARS-CoV-2 and identified known SARS-CoV-2 host factors including the receptor ACE2 and protease Cathepsin L. We additionally discovered novel pro-viral genes and pathways including the SWI/SNF chromatin remodeling complex and key components of the TGF-{beta} signaling pathway. Small molecule inhibitors of these pathways prevented SARS-CoV-2-induced cell death. We also revealed that the alarmin HMGB1 is critical for SARS-CoV-2 replication. In contrast, loss of the histone H3.3 chaperone complex sensitized cells to virus-induced death. Together this study reveals potential therapeutic targets for SARS-CoV-2 and highlights host genes that may regulate COVID-19 pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...