Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolomics ; 18(11): 89, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36342571

RESUMO

INTRODUCTION: The 2,6-dichloro-1,4-benzoquinone (DCBQ) and its derivative 2,6-dichloro-3-hydroxy-1,4-benzoquinone (DCBQ-OH) are disinfection by-products (DBPs) and emerging pollutants in the environment. They are considered to be of particular importance as they have a high potential of toxicity and they are likely to be carcinogenic. OBJECTIVES: In this study, human epidermal keratinocyte cells (HaCaT) were exposed to the DCBQ and its derivative DCBQ-OH, at concentrations equivalent to their IC20 and IC50, and a study of the metabolic phenotype of cells was performed. METHODS: The perturbations induced in cellular metabolites and their relative content were screened and evaluated through a metabolomic study, using 1H-NMR and MS spectroscopy. RESULTS: Changes in the metabolic pathways of HaCaT at concentrations corresponding to IC20 and IC50 of DCBQ-OH involved the activation of cell membrane α-linolenic acid, biotin, and glutathione and deactivation of glycolysis/gluconeogenesis at IC50. The changes in metabolic pathways at IC20 and IC50 of DCBQ were associated with the activation of inositol phosphate, pertaining to the transfer of messages from the receptors of the membrane to the interior as well as with riboflavin. Deactivation of biotin metabolism was recorded, among others. The cells exposed to DCBQ exhibited a concentration-dependent decrease in saccharide concentrations. The concentration of steroids increased when cells were exposed to IC20 and decreased at IC50. Although both chemical factors stressed the cells, DCBQ led to the activation of transporting messages through phosphorylated derivatives of inositol. CONCLUSION: Our findings provided insights into the impact of the two DBPs on human keratinocytes. Both chemical factors induced energy production perturbations, oxidative stress, and membrane damage.


Assuntos
Desinfecção , Queratinócitos , Humanos , Benzoquinonas/química , Benzoquinonas/toxicidade , Biotina , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Metabolômica
2.
Molecules ; 26(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34684829

RESUMO

Wound healing is a great challenge in many health conditions, especially in non-healing conditions. The search for new wound healing agents continues unabated, as the use of growth factors is accompanied by several limitations. Medicinal plants have been used for a long time in would healing, despite the lack of scientific evidence veryfying their efficacy. Up to now, the number of reports about medicinal plants with wound healing properties is limited. Urtica dioica L. is a well-known plant, widely used in many applications. Reports regarding its wound healing potential are scant and sparse. In this study, the effect of an Urtica dioica L. extract (containing fewer antioxidant compounds compared to methanolic or hydroalcoholic extracts) on cell proliferation, the cell cycle, and migration were examined. Additionally, antioxidant and anti-inflammatory properties were examined. Finally, in vivo experiments were carried out on full-thickness wounds on Wistar rats. It was found that the extract increases the proliferation rate of HEK-293 and HaCaT cells up to 39% and 30% after 24 h, respectively, compared to control cells. The extract was found to increase the population of cells in the G2/M phase by almost 10%. Additionally, the extract caused a two-fold increase in the cell migration rate of both cell lines compared to control cells. Moreover, the extract was found to have anti-inflammatory properties and moderate antioxidant properties that augment its overall wound healing potential. Results from the in vivo experiments showed that wounds treated with an ointment of the extract healed in 9 days, while wounds not treated with the extract healed in 13 days. Histopathological examination of the wound tissue revealed, among other findings, that inflammation was significantly reduced compared to the control. Urtica dioica L. extract application results in faster wound healing, making the extract ideal for wound healing applications and a novel drug candidate for wound healing.


Assuntos
Extratos Vegetais/farmacologia , Plantas Medicinais/química , Urtica dioica/química , Cicatrização/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Ratos , Ratos Wistar , Pele/efeitos dos fármacos , Pele/lesões , Pele/patologia
3.
ACS Appl Mater Interfaces ; 10(18): 16024-16032, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29659243

RESUMO

A simple yet effective method is employed to prepare multifunctional fluorescent carbon nanodots (CNDs) from human fingernails. The results demonstrate that the CNDs have excellent optical properties and a quantum yield of 81%, which is attributed to the intrinsic composition of the precursor material itself. The CNDs are used to develop an ultrasensitive fluorescent probe for the detection of hexavalent chromium (limit of detection: 0.3 nM) via a combined inner-filter and static mechanism. Moreover, the toxicity of the CNDs over four epithelial cell lines is assessed. A negligible toxicity is induced on the three of the cell lines, whereas an increase in HEK-293 cell viability is demonstrated, granting cell proliferation properties to the as-synthesized CNDs. According to cell cycle analysis, cell proliferation is achieved by enhancing the transition of cells from the S phase to the G2/M one. Interestingly, CNDs are found to significantly promote cell migration, maybe because of their free-radical scavenging ability, making the CNDs suitable for wound healing applications. In addition, relevant experiments have revealed the blood compatibility of the CNDs. Finally, the CNDs were found suitable for cell imaging applications, and all of the aforementioned merits make it possible for them to be used for extraordinary, more advanced biological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...