Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Pediatr ; 20(1): 521, 2020 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-33189139

RESUMO

BACKGROUND: In Uganda, childhood anemia remains a health challenge and is associated with malaria infection as well as iron deficiency. Iron deficiency is intertwined with nutritional status, age and other comorbidities including helminths and Lead toxicity. Environmental Lead levels accounts for one's blood Lead (BL) levels. Blood Lead competitively blocks iron absorption, inhibits hemoglobin (Hb) biosynthesis and elevates free erythrocyte protoporphyrin (FEP) levels. Lead toxicity's contribution towards anemia pathogenesis, especially during malaria infection has not been studied. Concomitant exposure to both malaria infection and Lead pollution, exacerbates the anemia status. This study therefore aimed at expounding the anemia status of these Ugandan children aged under 5years who are exposed to both malaria infection and environmental Lead pollution. METHODS: Briefly, venous blood samples from 198 children were microscopically assayed for malaria parasite density (PD), and hemoglobin (Hb) concentrations using the cyanmethemoglobin method, while BL and FEP levels were determined by the standard atomic absorption spectrophotometric and fluorometric methods respectively. RESULTS: One hundred and fifty-one (76.3%) of the children analyzed had moderate anemia (Hb <10>5 g/dL) with Means of BLL=8.6 µg/dL, Hb =7.5 g/dL, FEP/Hb =8.3 µg/g and PD =3.21×103 parasites / µL, while eight (4%) were severely anemic (<5 g/dL). Regression analysis and statistical correlation between PD and Hb (r = -0.231, R2= 0.15 P-value < 0.001) was negative and weak as compared to that between FEP/Hb and Hb (r = -0.6, R2=0.572 P-value=0.001). CONCLUSION: Based on the study's findings, we conclude that BL significantly contributes to the pathogenesis of anemia and therefore its co-existence with malaria infection in the host exacerbates the anemia status.


Assuntos
Anemia Ferropriva , Anemia , Chumbo/sangue , Malária , Anemia/epidemiologia , Anemia/etiologia , Anemia Ferropriva/epidemiologia , Anemia Ferropriva/etiologia , Pré-Escolar , Hemoglobinas/análise , Humanos , Malária/complicações , Malária/epidemiologia , Uganda/epidemiologia
2.
PLoS Pathog ; 9(12): e1003782, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348249

RESUMO

In the malaria parasite Plasmodium falciparum, the cellular redox potential influences signaling events, antioxidant defense, and mechanisms of drug action and resistance. Until now, the real-time determination of the redox potential in malaria parasites has been limited because conventional approaches disrupt sub-cellular integrity. Using a glutathione biosensor comprising human glutaredoxin-1 linked to a redox-sensitive green fluorescent protein (hGrx1-roGFP2), we systematically characterized basal values and drug-induced changes in the cytosolic glutathione-dependent redox potential (EGSH) of drug-sensitive (3D7) and resistant (Dd2) P. falciparum parasites. Via confocal microscopy, we demonstrated that hGrx1-roGFP2 rapidly detects EGSH changes induced by oxidative and nitrosative stress. The cytosolic basal EGSH of 3D7 and Dd2 were estimated to be -314.2±3.1 mV and -313.9±3.4 mV, respectively, which is indicative of a highly reducing compartment. We furthermore monitored short-, medium-, and long-term changes in EGSH after incubation with various redox-active compounds and antimalarial drugs. Interestingly, the redox cyclers methylene blue and pyocyanin rapidly changed the fluorescence ratio of hGrx1-roGFP2 in the cytosol of P. falciparum, which can, however, partially be explained by a direct interaction with the probe. In contrast, quinoline and artemisinin-based antimalarial drugs showed strong effects on the parasites' EGSH after longer incubation times (24 h). As tested for various conditions, these effects were accompanied by a drop in total glutathione concentrations determined in parallel with alternative methods. Notably, the effects were generally more pronounced in the chloroquine-sensitive 3D7 strain than in the resistant Dd2 strain. Based on these results hGrx1-roGFP2 can be recommended as a reliable and specific biosensor for real-time spatiotemporal monitoring of the intracellular EGSH in P. falciparum. Applying this technique in further studies will enhance our understanding of redox regulation and mechanisms of drug action and resistance in Plasmodium and might also stimulate redox research in other pathogens.


Assuntos
Glutationa/metabolismo , Malária Falciparum/parasitologia , Imagem Molecular/métodos , Plasmodium falciparum/metabolismo , Sistemas Computacionais , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Espaço Intracelular , Malária Falciparum/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...