Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
N Engl J Med ; 377(18): 1713-1722, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29091557

RESUMO

BACKGROUND: Spinal muscular atrophy type 1 (SMA1) is a progressive, monogenic motor neuron disease with an onset during infancy that results in failure to achieve motor milestones and in death or the need for mechanical ventilation by 2 years of age. We studied functional replacement of the mutated gene encoding survival motor neuron 1 (SMN1) in this disease. METHODS: Fifteen patients with SMA1 received a single dose of intravenous adeno-associated virus serotype 9 carrying SMN complementary DNA encoding the missing SMN protein. Three of the patients received a low dose (6.7×1013 vg per kilogram of body weight), and 12 received a high dose (2.0×1014 vg per kilogram). The primary outcome was safety. The secondary outcome was the time until death or the need for permanent ventilatory assistance. In exploratory analyses, we compared scores on the CHOP INTEND (Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders) scale of motor function (ranging from 0 to 64, with higher scores indicating better function) in the two cohorts and motor milestones in the high-dose cohort with scores in studies of the natural history of the disease (historical cohorts). RESULTS: As of the data cutoff on August 7, 2017, all 15 patients were alive and event-free at 20 months of age, as compared with a rate of survival of 8% in a historical cohort. In the high-dose cohort, a rapid increase from baseline in the score on the CHOP INTEND scale followed gene delivery, with an increase of 9.8 points at 1 month and 15.4 points at 3 months, as compared with a decline in this score in a historical cohort. Of the 12 patients who had received the high dose, 11 sat unassisted, 9 rolled over, 11 fed orally and could speak, and 2 walked independently. Elevated serum aminotransferase levels occurred in 4 patients and were attenuated by prednisolone. CONCLUSIONS: In patients with SMA1, a single intravenous infusion of adeno-associated viral vector containing DNA coding for SMN resulted in longer survival, superior achievement of motor milestones, and better motor function than in historical cohorts. Further studies are necessary to confirm the safety and efficacy of this gene therapy. (Funded by AveXis and others; ClinicalTrials.gov number, NCT02122952 .).


Assuntos
Terapia Genética , Atrofias Musculares Espinais da Infância/terapia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Estudos de Coortes , Dependovirus , Intervalo Livre de Doença , Feminino , Terapia Genética/efeitos adversos , Vetores Genéticos , Estudo Historicamente Controlado , Humanos , Lactente , Recém-Nascido , Infusões Intravenosas , Hepatopatias/etiologia , Masculino , Destreza Motora , Apoio Nutricional , Respiração Artificial , Atrofias Musculares Espinais da Infância/genética , Atrofias Musculares Espinais da Infância/fisiopatologia
2.
Transl Oncol ; 6(5): 562-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24151537

RESUMO

Poor drug delivery and penetration of antibody-mediated therapies pose significant obstacles to effective treatment of solid tumors. This study explored the role of pharmacokinetics, valency, and molecular weight in maximizing drug delivery. Biodistribution of a fibroblast growth factor receptor 4 (FGFR4) targeting CovX-body (an FGFR4-binding peptide covalently linked to a nontargeting IgG scaffold; 150 kDa) and enzymatically generated FGFR4 targeting F(ab)2 (100 kDa) and Fab (50 kDa) fragments was measured. Peak tumor levels were achieved in 1 to 2 hours for Fab and F(ab)2 versus 8 hours for IgG, and the percentage injected dose in tumors was 0.45%, 0.5%, and 2.5%, respectively, compared to 0.3%, 2%, and 6% of their nontargeting controls. To explore the contribution of multivalent binding, homodimeric peptides were conjugated to the different sized scaffolds, creating FGFR4 targeting IgG and F(ab)2 with four peptides and Fab with two peptides. Increased valency resulted in an increase in cell surface binding of the bivalent constructs. There was an inverse relationship between valency and intratumoral drug concentration, consistent with targeted consumption. Immunohistochemical analysis demonstrated increased size and increased cell binding decreased tumor penetration. The binding site barrier hypothesis suggests that limited tumor penetration, as a result of high-affinity binding, could result in decreased efficacy. In our studies, increased target binding translated into superior efficacy of the IgG instead, because of superior inhibition of FGFR4 proliferation pathways and dosing through the binding site barrier. Increasing valency is therefore an effective way to increase the efficacy of antibody-based drugs.

3.
Drug Discov Today ; 18(17-18): 807-17, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23726889

RESUMO

The notable expansion of peptide therapeutics development in the late 1990s and the 2000s led to an unprecedented number of marketing approvals in 2012 and has provided a robust pipeline that should deliver numerous approvals during the remainder of the 2010s. To document the current status of the pipeline, we collected data for peptide therapeutics in clinical studies and regulatory review, as well as those recently approved. In this Foundation review, we provide an overview of the pipeline, including therapeutic area and molecular targets, with a focus on glucagon-like peptide 1 receptor agonists. Areas for potential expansion, for example constrained peptides and peptide-drug conjugates, are profiled.


Assuntos
Descoberta de Drogas/tendências , Drogas em Investigação , Peptídeos , Animais , Aprovação de Drogas , Drogas em Investigação/química , Drogas em Investigação/farmacologia , Drogas em Investigação/uso terapêutico , Previsões , Humanos , Terapia de Alvo Molecular/tendências , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico
4.
Sci Rep ; 3: 1089, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23346347

RESUMO

Peptides show much promise as potent and selective drug candidates. Fusing peptides to a scaffold monoclonal antibody produces a conjugated antibody which has the advantages of peptide activity yet also has the pharmacokinetics determined by the scaffold antibody. However, the conjugated antibody often has poor binding affinity to antigens that may be related to unknown structural changes. The study of the conformational change is difficult by conventional techniques because structural fluctuation under equilibrium results in multiple structures co-existing. Here, we employed our two recently developed electron microscopy (EM) techniques: optimized negative-staining (OpNS) EM and individual-particle electron tomography (IPET). Two-dimensional (2D) image analyses and three-dimensional (3D) maps have shown that the domains of antibodies present an elongated peptide-conjugated conformational change, suggesting that our EM techniques may be novel tools to monitor the structural conformation changes in heterogeneous and dynamic macromolecules, such as drug delivery vehicles after pharmacological synthesis and development.


Assuntos
Imunoconjugados/química , Imunoglobulina G/química , Substâncias Macromoleculares/química , Microscopia Eletrônica/métodos , Coloração Negativa/métodos , Peptídeos/química , Anticorpos/química , Anticorpos/imunologia , Antígenos/química , Antígenos/imunologia , Tomografia com Microscopia Eletrônica/métodos , Humanos , Imunoconjugados/imunologia , Imunoglobulina G/imunologia , Substâncias Macromoleculares/imunologia , Conformação Molecular , Peptídeos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...