Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Mol Ther ; 31(9): 2767-2782, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37481701

RESUMO

The AAV9 gene therapy vector presented in this study is safe in mice and non-human primates and highly efficacious without causing overexpression toxicity, a major challenge for clinical translation of Rett syndrome gene therapy vectors to date. Our team designed a new truncated methyl-CpG-binding protein 2 (MECP2) promoter allowing widespread expression of MECP2 in mice and non-human primates after a single injection into the cerebrospinal fluid without causing overexpression symptoms up to 18 months after injection. Additionally, this new vector is highly efficacious at lower doses compared with previous constructs as demonstrated in extensive efficacy studies performed by two independent laboratories in two different Rett syndrome mouse models carrying either a knockout or one of the most frequent human mutations of Mecp2. Overall, data from this multicenter study highlight the efficacy and safety of this gene therapy construct, making it a promising candidate for first-in-human studies to treat Rett syndrome.


Assuntos
Síndrome de Rett , Humanos , Camundongos , Animais , Síndrome de Rett/genética , Síndrome de Rett/terapia , Síndrome de Rett/metabolismo , Primatas/genética , Terapia Genética , Mutação
2.
Front Genet ; 14: 1118649, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035740

RESUMO

CLN3 disease, caused by biallelic mutations in the CLN3 gene, is a rare pediatric neurodegenerative disease that has no cure or disease modifying treatment. The development of effective treatments has been hindered by a lack of etiological knowledge, but gene replacement has emerged as a promising therapeutic platform for such disorders. Here, we utilize a mouse model of CLN3 disease to test the safety and efficacy of a cerebrospinal fluid-delivered AAV9 gene therapy with a study design optimized for translatability. In this model, postnatal day one administration of the gene therapy virus resulted in robust expression of human CLN3 throughout the CNS over the 24-month duration of the study. A range of histopathological and behavioral parameters were assayed, with the therapy consistently and persistently rescuing a number of hallmarks of disease while being safe and well-tolerated. Together, the results show great promise for translation of the therapy into the clinic, prompting the launch of a first-in-human clinical trial (NCT03770572).

4.
Cells ; 11(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35406750

RESUMO

A lack of stratification methods in patients with amyotrophic lateral sclerosis (ALS) is likely implicated in therapeutic failures. Regional diversities and pathophysiological abnormalities in astrocytes from mice with SOD1 mutations (mSOD1-ALS) can now be explored in human patients using somatic cell reprogramming. Here, fibroblasts from four sporadic (sALS) and three mSOD1-ALS patients were transdifferentiated into induced astrocytes (iAstrocytes). ALS iAstrocytes were neurotoxic toward HB9-GFP mouse motor neurons (MNs) and exhibited subtype stratification through GFAP, CX43, Ki-67, miR-155 and miR-146a expression levels. Up- (two cases) and down-regulated (three cases) miR-146a values in iAstrocytes were recapitulated in their secretome, either free or as cargo in small extracellular vesicles (sEVs). We previously showed that the neuroprotective phenotype of depleted miR-146 mSOD1 cortical astrocytes was reverted by its mimic. Thus, we tested such modulation in the most miR-146a-depleted patient-iAstrocytes (one sALS and one mSOD1-ALS). The miR-146a mimic in ALS iAstrocytes counteracted their reactive/inflammatory profile and restored miR-146a levels in sEVs. A reduction in lysosomal activity and enhanced synaptic/axonal transport-related genes in NSC-34 MNs occurred after co-culture with miR-146a-modulated iAstrocytes. In summary, the regulation of miR-146a in depleted ALS astrocytes may be key in reestablishing their normal function and in restoring MN lysosomal/synaptic dynamic plasticity in disease sub-groups.


Assuntos
Esclerose Lateral Amiotrófica , MicroRNAs , Síndromes Neurotóxicas , Esclerose Lateral Amiotrófica/genética , Animais , Astrócitos , Modelos Animais de Doenças , Fibroblastos , Humanos , Camundongos , MicroRNAs/genética
5.
Thyroid ; 32(7): 849-859, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35350867

RESUMO

Background: Allan-Herndon-Dudley syndrome (AHDS) is a severe psychomotor disability disorder that also manifests characteristic abnormal thyroid hormone (TH) levels. AHDS is caused by inactivating mutations in monocarboxylate transporter 8 (MCT8), a specific TH plasma membrane transporter widely expressed in the central nervous system (CNS). MCT8 mutations cause impaired transport of TH across brain barriers, leading to insufficient neural TH supply. There is currently no successful therapy for the neurological symptoms. Earlier work has shown that intravenous (IV), but not intracerebroventricular adeno-associated virus serotype 9 (AAV9) -based gene therapy given to newborn Mct8 knockout (Mct8-/y) male mice increased triiodothyronine (T3) brain content and partially rescued TH-dependent gene expression, suggesting a promising approach to treat this neurological disorder. Methods: The potential of IV delivery of AAV9 carrying human MCT8 was tested in the well-established Mct8-/y/Organic anion-transporting polypeptide 1c1 (Oatp1c1)-/ - double knockout (dKO) mouse model of AHDS, which, unlike Mct8-/y mice, displays both neurological and TH phenotype. Further, as the condition is usually diagnosed during childhood, treatment was given intravenously to P30 mice and psychomotor tests were carried out blindly at P120-P140 after which tissues were collected and analyzed. Results: Systemic IV delivery of AAV9-MCT8 at a juvenile stage led to improved locomotor and cognitive functions at P120-P140, which was accompanied by a near normalization of T3 content and an increased response of positively regulated TH-dependent gene expression in different brain regions examined (thalamus, hippocampus, and parietal cortex). The effects on serum TH concentrations and peripheral tissues were less pronounced, showing only improvement in the serum T3/reverse T3 (rT3) ratio and in liver deiodinase 1 expression. Conclusion: IV administration of AAV9, carrying the human MCT8, to juvenile dKO mice manifesting AHDS has long-term beneficial effects, predominantly on the CNS. This preclinical study indicates that this gene therapy has the potential to ameliorate the devastating neurological symptoms in patients with AHDS.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X , Transportadores de Ácidos Monocarboxílicos , Simportadores , Animais , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/terapia , Camundongos , Transportadores de Ácidos Monocarboxílicos/administração & dosagem , Transportadores de Ácidos Monocarboxílicos/deficiência , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hipotonia Muscular , Atrofia Muscular , Mutação , Sorogrupo , Simportadores/administração & dosagem , Simportadores/deficiência , Simportadores/genética , Simportadores/metabolismo , Tri-Iodotironina/metabolismo
6.
Neurobiol Aging ; 104: 32-41, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33964607

RESUMO

Sarcopenia, or age-related loss of muscle mass and strength, is an important contributor to loss of physical function in older adults. The pathogenesis of sarcopenia is likely multifactorial, but recently the role of neurological degeneration, such as motor unit loss, has received increased attention. Here, we investigated the longitudinal effects of muscle hypertrophy (via overexpression of human follistatin, a myostatin antagonist) on neuromuscular integrity in C57BL/6J mice between the ages of 24 and 27 months. Following follistatin overexpression (delivered via self-complementary adeno-associated virus subtype 9 injection), muscle weight and torque production were significantly improved. Follistatin treatment resulted in improvements of neuromuscular junction innervation and transmission but had no impact on age-related losses of motor units. These studies demonstrate that follistatin overexpression-induced muscle hypertrophy not only increased muscle weight and torque production but also countered age-related degeneration at the neuromuscular junction in mice.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Folistatina/farmacologia , Músculo Esquelético/patologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/fisiologia , Animais , Feminino , Folistatina/genética , Folistatina/metabolismo , Expressão Gênica , Hipertrofia/genética , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/genética , Sarcopenia/genética , Sarcopenia/prevenção & controle , Transmissão Sináptica/efeitos dos fármacos
7.
Neurobiol Aging ; 101: 285-296, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33678425

RESUMO

Sarcopenia, or pathological loss of muscle mass and strength during aging, is an important contributor to loss of physical function in older adults. Sarcopenia is a multifactorial syndrome associated with intrinsic muscle and upstream neurological dysfunction. Exercise is well-established as an effective intervention for sarcopenia, but less is known about the long-term neurobiological impact of exercise. The goals of this study were to investigate the effects of exercise, alone or in combination with follistatin (FST) overexpression (antagonist of myostatin), on neuromuscular junction transmission and motor unit numbers in mice between the age of 22 and 27 months, ages at which prior studies have demonstrated that some motor unit loss is already evident. C57BL/6J mice underwent baseline assessment and were randomized to housing with or without voluntary running wheels and injection with adeno-associated virus to overexpress FST or vehicle. Groups for comparison included sedentary and running with and without FST. Longitudinal assessments showed significantly increased muscle mass and contractility in the 'running plus FST' group, but running, with and without FST, showed no effect on motor unit degeneration. In contrast, running, with and without FST, demonstrated marked improvement of neuromuscular junction transmission stability.


Assuntos
Envelhecimento/genética , Envelhecimento/patologia , Folistatina/fisiologia , Expressão Gênica/genética , Expressão Gênica/fisiologia , Neurônios Motores/patologia , Junção Neuromuscular/fisiologia , Corrida/fisiologia , Sarcopenia/etiologia , Transmissão Sináptica/genética , Envelhecimento/fisiologia , Animais , Feminino , Folistatina/genética , Folistatina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Sarcopenia/genética , Sarcopenia/fisiopatologia
8.
Mol Ther Methods Clin Dev ; 20: 497-507, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33665223

RESUMO

Batten disease is a family of rare, fatal, neuropediatric diseases presenting with memory/learning decline, blindness, and loss of motor function. Recently, we reported the use of an AAV9-mediated gene therapy that prevents disease progression in a mouse model of CLN6-Batten disease (Cln6 nclf ), restoring lifespans in treated animals. Despite the success of our viral-mediated gene therapy, the dosing strategy was optimized for delivery to the brain parenchyma and may limit the therapeutic potential to other disease-relevant tissues, such as the eye. Here, we examine whether cerebrospinal fluid (CSF) delivery of scAAV9.CB.CLN6 is sufficient to ameliorate visual deficits in Cln6 nclf mice. We show that intracerebroventricular (i.c.v.) delivery of scAAV9.CB.CLN6 completely prevents hallmark Batten disease pathology in the visual processing centers of the brain, preserving neurons of the superior colliculus, thalamus, and cerebral cortex. Importantly, i.c.v.-delivered scAAV9.CB.CLN6 also expresses in many cells throughout the central retina, preserving many photoreceptors typically lost in Cln6 nclf mice. Lastly, scAAV9.CB.CLN6 treatment partially preserved visual acuity in Cln6 nclf mice as measured by optokinetic response. Taken together, we report the first instance of CSF-delivered viral gene reaching and rescuing pathology in both the brain parenchyma and retinal neurons, thereby partially slowing visual deterioration.

9.
Hum Mol Genet ; 29(21): 3477-3492, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075805

RESUMO

Spinal muscular atrophy (SMA) is caused by mutation or deletion of survival motor neuron 1 (SMN1) and retention of SMN2 leading to SMN protein deficiency. We developed an immortalized mouse embryonic fibroblast (iMEF) line in which full-length wild-type Smn (flwt-Smn) can be conditionally deleted using Cre recombinase. iMEFs lacking flwt-Smn are not viable. We tested the SMA patient SMN1 missense mutation alleles A2G, D44V, A111G, E134K and T274I in these cells to determine which human SMN (huSMN) mutant alleles can function in the absence of flwt-Smn. All missense mutant alleles failed to rescue survival in the conditionally deleted iMEFs. Thus, the function lost by these mutations is essential to cell survival. However, co-expression of two different huSMN missense mutants can rescue iMEF survival and small nuclear ribonucleoprotein (snRNP) assembly, demonstrating intragenic complementation of SMN alleles. In addition, we show that a Smn protein lacking exon 2B can rescue iMEF survival and snRNP assembly in the absence of flwt-Smn, indicating exon 2B is not required for the essential function of Smn. For the first time, using this novel cell line, we can assay the function of SMN alleles in the complete absence of flwt-Smn.


Assuntos
Atrofia Muscular Espinal/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Alelos , Animais , Sobrevivência Celular/genética , Modelos Animais de Doenças , Éxons/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Integrases/genética , Camundongos , Atrofia Muscular Espinal/patologia , Mutação de Sentido Incorreto/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética
10.
Cereb Cortex ; 30(6): 3731-3743, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32080705

RESUMO

Neuronal activity initiates transcriptional programs that shape long-term changes in plasticity. Although neuron subtypes differ in their plasticity response, most activity-dependent transcription factors (TFs) are broadly expressed across neuron subtypes and brain regions. Thus, how region- and neuronal subtype-specific plasticity are established on the transcriptional level remains poorly understood. We report that in young adult (i.e., 6-8 weeks old) mice, the developmental TF SOX11 is induced in neurons within 6 h either by electroconvulsive stimulation or by exploration of a novel environment. Strikingly, SOX11 induction was restricted to the dentate gyrus (DG) of the hippocampus. In the novel environment paradigm, SOX11 was observed in a subset of c-FOS expressing neurons (ca. 15%); whereas around 75% of SOX11+ DG granule neurons were c-FOS+, indicating that SOX11 was induced in an activity-dependent fashion in a subset of neurons. Environmental enrichment or virus-mediated overexpression of SOX11 enhanced the excitability of DG granule cells and downregulated the expression of different potassium channel subunits, whereas conditional Sox11/4 knock-out mice presented the opposite phenotype. We propose that Sox11 is regulated in an activity-dependent fashion, which is specific to the DG, and speculate that activity-dependent Sox11 expression may participate in the modulation of DG neuron plasticity.


Assuntos
Giro Denteado/metabolismo , Comportamento Exploratório/fisiologia , Regulação da Expressão Gênica , Plasticidade Neuronal/genética , Neurônios/metabolismo , Fatores de Transcrição SOXC/genética , Animais , Eletrochoque , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Transcrição SOXC/metabolismo
11.
Nat Med ; 26(1): 118-130, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873312

RESUMO

Gene silencing with virally delivered shRNA represents a promising approach for treatment of inherited neurodegenerative disorders. In the present study we develop a subpial technique, which we show in adult animals successfully delivers adeno-associated virus (AAV) throughout the cervical, thoracic and lumbar spinal cord, as well as brain motor centers. One-time injection at cervical and lumbar levels just before disease onset in mice expressing a familial amyotrophic lateral sclerosis (ALS)-causing mutant SOD1 produces long-term suppression of motoneuron disease, including near-complete preservation of spinal α-motoneurons and muscle innervation. Treatment after disease onset potently blocks progression of disease and further α-motoneuron degeneration. A single subpial AAV9 injection in adult pigs or non-human primates using a newly designed device produces homogeneous delivery throughout the cervical spinal cord white and gray matter and brain motor centers. Thus, spinal subpial delivery in adult animals is highly effective for AAV-mediated gene delivery throughout the spinal cord and supraspinal motor centers.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Dependovirus/metabolismo , Inativação Gênica , Técnicas de Transferência de Genes , Neurônios Motores/patologia , Degeneração Neural/terapia , Pia-Máter/patologia , Medula Espinal/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Atrofia , Progressão da Doença , Potencial Evocado Motor , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação/patologia , Interneurônios/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Desenvolvimento Muscular , Degeneração Neural/genética , Degeneração Neural/fisiopatologia , Pia-Máter/fisiopatologia , Primatas , Dobramento de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/administração & dosagem , Medula Espinal/diagnóstico por imagem , Medula Espinal/fisiopatologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Suínos
12.
J Neuromuscul Dis ; 6(3): 307-317, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31381526

RESUMO

BACKGROUND: Spinal muscular atrophy type 1 (SMA1) is the leading genetic cause of infant mortality for which therapies, including AVXS-101 (onasemnogene abeparvovec, Zolgensma®) gene replacement therapy, are emerging. OBJECTIVE: This study evaluated the effectiveness of AVXS-101 in infants with spinal muscular atrophy type 1 (SMA1) compared with a prospective natural history cohort and a cohort of healthy infants. METHODS: Twelve SMA1 infants received the proposed therapeutic dose of AVXS-101 (NCT02122952). Where possible, the following outcomes were compared with a natural history cohort of SMA1 infants (n = 16) and healthy infants (n = 27) enrolled in the NeuroNEXT (NN101) study (NCT01736553): event-free survival, CHOP-INTEND scores, motor milestone achievements, compound muscle action potential (CMAP), and adverse events. RESULTS: Baseline characteristics of SMA1 infants in the AVXS-101 and NN101 studies were similar in age and genetic profile. The proportion of AVXS-101-treated infants who survived by 24 months of follow-up was higher compared with the NN101 study (100% vs 38%, respectively). The average baseline CHOP-INTEND score for NN101 SMA1 infants was 20.3, worsening to 5.3 by age 24 months; the average baseline score in AVXS-101-treated infants was 28.2, improving to 56.5 by age 24 months. Infants receiving AVXS-101 achieved motor milestones, such as sitting unassisted and walking. Improvements in CMAP peak area were observed in AVXS-101-treated infants at 6 and 24 months (means of 1.1 and 3.2 mV/s, respectively). CONCLUSIONS: In this study, AVXS-101 increased the probability of survival, rapidly improved motor function, and enabled motor milestone achievement in SMA1 infants.


Assuntos
Terapia Genética , Atrofias Musculares Espinais da Infância/terapia , Feminino , Humanos , Lactente , Estimativa de Kaplan-Meier , Masculino , Estudos Prospectivos , Atrofias Musculares Espinais da Infância/genética , Resultado do Tratamento
13.
Mol Ther ; 27(10): 1836-1847, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31331814

RESUMO

CLN6-Batten disease, a form of neuronal ceroid lipofuscinosis is a rare lysosomal storage disorder presenting with gradual declines in motor, visual, and cognitive abilities and early death by 12-15 years of age. We developed a self-complementary adeno-associated virus serotype 9 (scAAV9) vector expressing the human CLN6 gene under the control of a chicken ß-actin (CB) hybrid promoter. Intrathecal delivery of scAAV9.CB.hCLN6 into the cerebrospinal fluid (CSF) of the lumbar spinal cord of 4-year-old non-human primates was safe, well tolerated, and led to efficient targeting throughout the brain and spinal cord. A single intracerebroventricular (i.c.v.) injection at post-natal day 1 in Cln6 mutant mice delivered scAAV9.CB.CLN6 directly into the CSF, and it prevented or drastically reduced all of the pathological hallmarks of Batten disease. Moreover, there were significant improvements in motor performance, learning and memory deficits, and survival in treated Cln6 mutant mice, extending survival from 15 months of age (untreated) to beyond 21 months of age (treated). Additionally, many parameters were similar to wild-type counterparts throughout the lifespan of the treated mice.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/psicologia , Lipofuscinoses Ceroides Neuronais/terapia , Actinas/genética , Animais , Vetores Genéticos/administração & dosagem , Vetores Genéticos/efeitos adversos , Humanos , Infusões Intraventriculares , Injeções Espinhais , Aprendizagem/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Camundongos , Atividade Motora/efeitos dos fármacos , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/metabolismo , Primatas , Regiões Promotoras Genéticas , Resultado do Tratamento
14.
Hum Mol Genet ; 28(22): 3691-3703, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31127937

RESUMO

Machado-Joseph disease or spinocerebellar ataxia type 3 is an inherited neurodegenerative disease associated with an abnormal glutamine over-repetition within the ataxin-3 protein. This mutant ataxin-3 protein affects several cellular pathways, leading to neuroinflammation and neuronal death in specific brain regions resulting in severe clinical manifestations. Presently, there is no therapy able to modify the disease progression. Nevertheless, anti-inflammatory pharmacological intervention has been associated with positive outcomes in other neurodegenerative diseases. Thus, the present work aimed at investigating whether ibuprofen treatment would alleviate Machado-Joseph disease. We found that ibuprofen-treated mouse models presented a significant reduction in the neuroinflammation markers, namely Il1b and TNFa mRNA and IKB-α protein phosphorylation levels. Moreover, these mice exhibited neuronal preservation, cerebellar atrophy reduction, smaller mutant ataxin-3 inclusions and motor performance improvement. Additionally, neural cultures of Machado-Joseph disease patients' induced pluripotent stem cells-derived neural stem cells incubated with ibuprofen showed increased levels of neural progenitors proliferation and synaptic markers such as MSI1, NOTCH1 and SYP. These findings were further confirmed in ibuprofen-treated mice that display increased neural progenitor numbers (Ki67 positive) in the subventricular zone. Furthermore, interestingly, ibuprofen treatment enhanced neurite total length and synaptic function of human neurons. Therefore, our results indicate that ibuprofen reduces neuroinflammation and induces neuroprotection, alleviating Machado-Joseph disease-associated neuropathology and motor impairments. Thus, our findings demonstrate that ibuprofen treatment has the potential to be used as a neuroprotective therapeutic approach in Machado-Joseph disease.


Assuntos
Ibuprofeno/farmacologia , Doença de Machado-Joseph/tratamento farmacológico , Sinapses/efeitos dos fármacos , Animais , Ataxina-3/metabolismo , Ataxina-3/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cerebelo/metabolismo , Modelos Animais de Doenças , Fibroblastos , Humanos , Ibuprofeno/metabolismo , Células-Tronco Pluripotentes Induzidas , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteínas Nucleares/genética
15.
Methods Mol Biol ; 1950: 177-197, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30783974

RESUMO

Recombinant adeno-associated viral (rAAV) vectors are a promising tool for therapeutic gene delivery to the brain. However, the delivery of rAAVs across the blood-brain barrier (BBB) and entry into the brain remains a major challenge for rAAV-based gene therapy. To circumvent this limitation, transcranial MRI-guided focused ultrasound (MRIgFUS) combined with intravenously injected microbubbles has been used to transiently and reversibly increase BBB permeability in targeted brain regions. Systemic administration of rAAVs at the time of sonication with focused ultrasound (FUS) facilitates the passage of rAAVs through the BBB and into the brain parenchyma. We and others have demonstrated that FUS-mediated rAAV delivery to the brain results in efficient transduction and transgene expression in vivo. Using this approach, the dose of intravenously injected rAAV variants that can cross the BBB can be reduced by 100 times, achieving significant transgene expression in the brain parenchyma with reduced peripheral transduction. Moreover, this strategy can be used to deliver rAAV variants that do not cross the BBB from the blood to selected brain regions. Here, we provide a detailed protocol for FUS-induced BBB permeability for targeted rAAV delivery to the brain of adult mice and rats.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Imageamento por Ressonância Magnética , Neuronavegação , Ultrassonografia , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos da radiação , Expressão Gênica , Genes Reporter , Vetores Genéticos/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Camundongos , Neuronavegação/métodos , Permeabilidade/efeitos da radiação , Ratos , Transgenes , Ultrassonografia/métodos
16.
Mol Ther Nucleic Acids ; 12: 75-88, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195799

RESUMO

Of familial amyotrophic lateral sclerosis (fALS) cases, 20% are caused by mutations in the gene encoding human cytosolic Cu/Zn superoxide dismutase (hSOD1). Efficient translation of the therapeutic potential of RNAi for the treatment of SOD1-ALS patients requires the development of vectors that are free of significant off-target effects and with reliable biomarkers to discern sufficient target engagement and correct dosing. Using adeno-associated virus serotype 9 to deliver RNAi against hSOD1 in the SOD1G93A mouse model, we found that intrathecal injection of the therapeutic vector via the cisterna magna delayed onset of disease, decreased motor neuron death at end stage by up to 88%, and prolonged the median survival of SOD1G93A mice by up to 42%. To our knowledge, this is the first report to demonstrate no significant off-target effects linked to hSOD1 silencing, providing further confidence in the specificity of this approach. We also report the measurement of cerebrospinal fluid (CSF) hSOD1 protein levels as a biomarker of effective dosing and efficacy of hSOD1 knockdown. Together, these data provide further confidence in the safety of the clinical therapeutic vector. The CSF biomarker will be a useful measure of biological activity for translation into human clinical trials.

17.
Ann Diagn Pathol ; 36: 12-20, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29966831

RESUMO

Spinal cord paralysis is relatively common after surgical repair of thoraco-abdominal aortic aneurysm (TAAA) and its etiology is unknown. The present study was designed to examine the histopathology of the disease and investigate whether miR-155 ablation would reduce spinal cord ischemic damage and delayed hindlimb paralysis induced by aortic cross-clamping (ACC) in our mouse model. The loss of locomotor function in ACC-paralyzed mice correlated with the presence of extensive gray matter damage and central cord edema, with minimal white matter histopathology. qRTPCR and Western blotting showed that the spinal cords of wild-type ACC mice that escaped paralysis showed lower miR-155 expression and higher levels of transcripts encoding Mfsd2a, which is implicated in the maintenance of blood-brain barrier integrity. In situ based testing demonstrated that increased miR-155 detection in neurons was highly correlated with the gray matter damage and the loss of one of its targets, Mfsd2a, could serve as a good biomarker of the endothelial cell damage. In vitro, we demonstrated that miR-155 targeted Mfsd2a in endothelial cells and motoneurons and increased endothelial cell permeability. Finally, miR-155 ablation slowed the progression of central cord edema, and reduced the incidence of paralysis by 40%. In sum, the surgical pathology findings clearly indicated that the epicenter of the ischemic-induced paralysis was the gray matter and that endothelial cell damage correlated to Mfsd2a loss is a good biomarker of the disease. MiR-155 targeting therefore offers new therapeutic opportunity for edema caused by traumatic spinal cord injury and diagnostic pathologists, by using immunohistochemistry, can clarify if this mechanism also is important in other ischemic diseases of the CNS, including stroke.


Assuntos
Isquemia/metabolismo , Proteínas de Membrana Transportadoras/genética , MicroRNAs/genética , Traumatismos da Medula Espinal/genética , Animais , Modelos Animais de Doenças , Imuno-Histoquímica/métodos , Isquemia/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Doenças do Sistema Nervoso/genética , Neurônios/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Simportadores , Proteínas Supressoras de Tumor/genética
18.
Hum Mol Genet ; 27(12): 2187-2204, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29648643

RESUMO

The nuclear-encoded glycyl-tRNA synthetase gene (GARS) is essential for protein translation in both cytoplasm and mitochondria. In contrast, different genes encode the mitochondrial and cytosolic forms of most other tRNA synthetases. Dominant GARS mutations were described in inherited neuropathies, while recessive mutations cause severe childhood-onset disorders affecting skeletal muscle and heart. The downstream events explaining tissue-specific phenotype-genotype relations remained unclear. We investigated the mitochondrial function of GARS in human cell lines and in the GarsC210R mouse model. Human-induced neuronal progenitor cells (iNPCs) carrying dominant and recessive GARS mutations showed alterations of mitochondrial proteins, which were more prominent in iNPCs with dominant, neuropathy-causing mutations. Although comparative proteomic analysis of iNPCs showed significant changes in mitochondrial respiratory chain complex subunits, assembly genes, Krebs cycle enzymes and transport proteins in both recessive and dominant mutations, proteins involved in fatty acid oxidation were only altered by recessive mutations causing mitochondrial cardiomyopathy. In contrast, significant alterations of the vesicle-associated membrane protein-associated protein B (VAPB) and its downstream pathways such as mitochondrial calcium uptake and autophagy were detected in dominant GARS mutations. The role of VAPB has been supported by similar results in the GarsC210R mice. Our data suggest that altered mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) may be important disease mechanisms leading to neuropathy in this condition.


Assuntos
Retículo Endoplasmático/genética , Glicina-tRNA Ligase/genética , Mitocôndrias/genética , Proteínas de Transporte Vesicular/genética , Animais , Humanos , Camundongos , Mitocôndrias/metabolismo , Mutação , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais , Células-Tronco/metabolismo
19.
N Engl J Med ; 377(18): 1713-1722, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29091557

RESUMO

BACKGROUND: Spinal muscular atrophy type 1 (SMA1) is a progressive, monogenic motor neuron disease with an onset during infancy that results in failure to achieve motor milestones and in death or the need for mechanical ventilation by 2 years of age. We studied functional replacement of the mutated gene encoding survival motor neuron 1 (SMN1) in this disease. METHODS: Fifteen patients with SMA1 received a single dose of intravenous adeno-associated virus serotype 9 carrying SMN complementary DNA encoding the missing SMN protein. Three of the patients received a low dose (6.7×1013 vg per kilogram of body weight), and 12 received a high dose (2.0×1014 vg per kilogram). The primary outcome was safety. The secondary outcome was the time until death or the need for permanent ventilatory assistance. In exploratory analyses, we compared scores on the CHOP INTEND (Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders) scale of motor function (ranging from 0 to 64, with higher scores indicating better function) in the two cohorts and motor milestones in the high-dose cohort with scores in studies of the natural history of the disease (historical cohorts). RESULTS: As of the data cutoff on August 7, 2017, all 15 patients were alive and event-free at 20 months of age, as compared with a rate of survival of 8% in a historical cohort. In the high-dose cohort, a rapid increase from baseline in the score on the CHOP INTEND scale followed gene delivery, with an increase of 9.8 points at 1 month and 15.4 points at 3 months, as compared with a decline in this score in a historical cohort. Of the 12 patients who had received the high dose, 11 sat unassisted, 9 rolled over, 11 fed orally and could speak, and 2 walked independently. Elevated serum aminotransferase levels occurred in 4 patients and were attenuated by prednisolone. CONCLUSIONS: In patients with SMA1, a single intravenous infusion of adeno-associated viral vector containing DNA coding for SMN resulted in longer survival, superior achievement of motor milestones, and better motor function than in historical cohorts. Further studies are necessary to confirm the safety and efficacy of this gene therapy. (Funded by AveXis and others; ClinicalTrials.gov number, NCT02122952 .).


Assuntos
Terapia Genética , Atrofias Musculares Espinais da Infância/terapia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Estudos de Coortes , Dependovirus , Intervalo Livre de Doença , Feminino , Terapia Genética/efeitos adversos , Vetores Genéticos , Estudo Historicamente Controlado , Humanos , Lactente , Recém-Nascido , Infusões Intravenosas , Hepatopatias/etiologia , Masculino , Destreza Motora , Apoio Nutricional , Respiração Artificial , Atrofias Musculares Espinais da Infância/genética , Atrofias Musculares Espinais da Infância/fisiopatologia
20.
Exp Neurol ; 297: 101-109, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28797631

RESUMO

Heat shock protein beta-1 (HSPB1), is a ubiquitously expressed, multifunctional protein chaperone. Mutations in HSPB1 result in the development of a late-onset, distal hereditary motor neuropathy type II (dHMN) and axonal Charcot-Marie Tooth disease with sensory involvement (CMT2F). The functional consequences of HSPB1 mutations associated with hereditary neuropathy are unknown. HSPB1 also displays neuroprotective properties in many neuronal disease models, including the motor neuron disease amyotrophic lateral sclerosis (ALS). HSPB1 is upregulated in SOD1-ALS animal models during disease progression, predominately in glial cells. Glial cells are known to contribute to motor neuron loss in ALS through a non-cell autonomous mechanism. In this study, we examined the non-cell autonomous role of wild type and mutant HSPB1 in an astrocyte-motor neuron co-culture model system of ALS. Astrocyte-specific overexpression of wild type HSPB1 was sufficient to attenuate SOD1(G93A) astrocyte-mediated toxicity in motor neurons, whereas, overexpression of mutHSPB1 failed to ameliorate motor neuron toxicity. Expression of a phosphomimetic HSPB1 mutant in SOD1(G93A) astrocytes also reduced toxicity to motor neurons, suggesting that phosphorylation may contribute to HSPB1 mediated-neuroprotection. These data provide evidence that astrocytic HSPB1 expression may play a central role in motor neuron health and maintenance.


Assuntos
Astrócitos/fisiologia , Doença de Charcot-Marie-Tooth/genética , Proteínas de Choque Térmico/genética , Neurônios Motores/fisiologia , Mutação/genética , Proteínas de Neoplasias/genética , Neuroglia/fisiologia , Animais , Astrócitos/patologia , Sobrevivência Celular/fisiologia , Doença de Charcot-Marie-Tooth/patologia , Técnicas de Cocultura , Humanos , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares , Neurônios Motores/patologia , Neuroglia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...