Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35886342

RESUMO

In the presented research, we characterised the temperature profiles and the degree of preparation for exercise of individual muscle groups of athletes We hypothesise that by means of thermal imaging studies, the effectiveness of the warm-up can be monitored to determine whether the effort of individual muscles is equal and symmetrical, which can help to avoid a potential injury. In the study, thermographic imaging was performed on a group of athletes exercising on a rowing ergometer involving almost 80% of the muscle parts of the human body for intense and symmetrical exercise. Thermovision studies have confirmed, based on the increased temperature of the muscle areas, that the rowing ergometer involves many muscle groups in training. Moreover, based on the shape of the temperature function obtained from individual body regions of interest, it was shown that conventional exercise on a rowing ergometer causes almost symmetrical work of the right and left sides of the body. Obtained temperature changes in most of the studied muscle areas showed minimum temperature reached the beginning of training-mostly phases 1 and 2. During the subsequent phases, the temperature increase was monitored, stopping at resting temperature. Significantly, temperature variations did not exceed 0.5 °C in all post-training phases. Statistical analyses did not show any significant differences in the symmetry of right and left muscle areas corresponding to the muscle location temperature. Thermal imaging may be an innovative wholly non-invasive and safe method, because checking induces adaptation processes, which may become indicators of an athlete's efficiency. The imaging can be continuously repeated, and automatic comparison of average temperature or temperature difference may provide some clues that protect athletes from overtraining or serious injuries.


Assuntos
Esportes , Atletas , Ergometria , Exercício Físico/fisiologia , Humanos , Músculos , Esportes/fisiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-34201483

RESUMO

Clinical studies have been performed to evaluate the thermal response of topical hyperbaric oxygen therapy (THBOT) in patients suffering from hard-to-heal wounds diagnosed as venous leg ulcers located on their lower extremities. It was found that this therapy leads to a temperature decrease in areas around the wound. Moreover, a minor temperature differentiation between all areas was seen in the third period of topical hyperbaric oxygen therapy (THBOT) that may suggest that microcirculation and thermoregulation improvement start the healing process. On the other hand, the results of the conducted studies seem to prove that thermal imaging may provide a safe and effective method of analyzing wound healing of hard-to-heal wounds being treated with THBOT. This is the first study that tries to show the possibilities of a very new method by evaluating treatment of hard-to-heal wounds using thermal imaging, similar to the hyperbaric oxygen therapy effects evaluated by thermal imaging and described previously. However, the first clinical results showed a decrease in temperature due to the THBOT session and some qualitative similarities in the decrease in temperature differentiation between the studied areas and the temperature effects obtained due to hyperbaric oxygen therapy.


Assuntos
Oxigenoterapia Hiperbárica , Úlcera Varicosa , Humanos , Projetos Piloto , Cicatrização
3.
Artigo em Inglês | MEDLINE | ID: mdl-32781767

RESUMO

The goal of the training is to enable the body to perform prolonged physical effort without reducing its effectiveness while maintaining the body's homeostasis. Homeostasis is the ability of the system to maintain, in dynamic balance, the stability of the internal environment. Equally as important as monitoring the body's thermoregulation phenomena during exercise seems to be the evaluation of these mechanisms after physical effort, when the athlete's body returns to physiological homeostasis. Restoring homeostasis is an important factor in body regeneration and has a significant impact on preventing overtraining. In this work we present a training protocol using a rowing ergometer, which was planned to be carried out in a short time and which involves working the majority of the athlete's muscles, allowing a full assessment of the body's thermal parameters after stopping exercise and during the body's return to thermal equilibrium and homeostasis. The significant differences between normalized mean body surface temperature obtained for the cyclist before the training period and strength group as well as before and 10 min after training were obtained. Such observation seems to bring indirectly some information about the sportsperson's efficiency due to differences in body temperature in the first 10 min of training when sweat does not play a main role in surface temperature. Nearly 1 °C drop of mean body temperature has been measured due to the period of training. It is concluded that thermovision not only allows you to monitor changes in body temperature due to sports activity, but also allows you to determine which of the athletes has a high level of body efficiency. The average maximum body temperature of such an athlete is higher (32.5 °C) than that of an athlete who has not trained regularly (30.9 °C) and whose body probably requires further training.


Assuntos
Atletas/psicologia , Desempenho Atlético , Exercício Físico , Esportes , Regulação da Temperatura Corporal , Humanos , Esforço Físico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...