Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Sci Adv ; 5(5-6): e2400003, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38948318

RESUMO

Detecting foodborne contamination is a critical challenge in ensuring food safety and preventing human suffering and economic losses. Contaminated food, comprising biological agents (e.g. bacteria, viruses and fungi) and chemicals (e.g. toxins, allergens, antibiotics and heavy metals), poses significant risks to public health. Microfluidic technology has emerged as a transformative solution, revolutionizing the detection of contaminants with precise and efficient methodologies. By manipulating minute volumes of fluid on miniaturized systems, microfluidics enables the creation of portable chips for biosensing applications. Advancements from early glass and silicon devices to modern polymers and cellulose-based chips have significantly enhanced microfluidic technology, offering adaptability, flexibility, cost-effectiveness and biocompatibility. Microfluidic systems integrate seamlessly with various biosensing reactions, facilitating nucleic acid amplification, target analyte recognition and accurate signal readouts. As research progresses, microfluidic technology is poised to play a pivotal role in addressing evolving challenges in the detection of foodborne contaminants. In this short review, we delve into various manufacturing materials for state-of-the-art microfluidic devices, including inorganics, elastomers, thermoplastics and paper. Additionally, we examine several applications where microfluidic technology offers unique advantages in the detection of food contaminants, including bacteria, viruses, fungi, allergens and more. This review underscores the significant advancement of microfluidic technology and its pivotal role in advancing the detection and mitigation of foodborne contaminants.

2.
Lab Chip ; 24(14): 3490-3497, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38920004

RESUMO

Point-of-care (POC) diagnostics have emerged as a crucial technology for emerging pathogen detections to enable rapid and on-site detection of infectious diseases. However, current POC devices often suffer from limited sensitivity with poor reliability to provide quantitative readouts. In this paper, we present a self-powered digital loop-mediated isothermal amplification (dLAMP) microfluidic chip (SP-dChip) for the rapid and quantitative detection of nucleic acids. The SP-dChip utilizes a vacuum lung design to passively digitize samples into individual nanoliter wells for high-throughput analysis. The superior digitization scheme is further combined with reverse transcription loop-mediated isothermal amplification (RT-LAMP) to demonstrate dLAMP detection of Zika virus (ZIKV). Firstly, the LAMP assay is loaded into the chip and passively digitized into individual wells. Mineral oil is then pipetted through the chip to differentiate each well as an individual reactor. The chip did not require any external pumping or power input for rapid and reliable results to detect ZIKA RNA as low as 100 copies per µL within one hour. As such, this SP-dChip offers a new class of solutions for truly affordable, portable, and quantitative POC detections for emerging viruses.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Técnicas de Amplificação de Ácido Nucleico , Zika virus , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Técnicas de Amplificação de Ácido Nucleico/métodos , Zika virus/isolamento & purificação , Zika virus/genética , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento , Humanos , Técnicas de Diagnóstico Molecular/instrumentação , Técnicas de Diagnóstico Molecular/métodos , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/virologia , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/análise , RNA Viral/genética
3.
Anal Chem ; 96(6): 2676-2683, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38290431

RESUMO

Sepsis is an extremely dangerous medical condition that emanates from the body's response to a pre-existing infection. Early detection of sepsis-inducing bacterial infections can greatly enhance the treatment process and potentially prevent the onset of sepsis. However, current point-of-care (POC) sensors are often complex and costly or lack the ideal sensitivity for effective bacterial detection. Therefore, it is crucial to develop rapid and sensitive biosensors for the on-site detection of sepsis-inducing bacteria. Herein, we developed a graphene oxide CRISPR-Cas12a (GO-CRISPR) biosensor for the detection of sepsis-inducing bacteria in human serum. In this strategy, single-stranded (ssDNA) FAM probes were quenched with single-layer graphene oxide (GO). Target-activated Cas12a trans-cleavage was utilized for the degradation of the ssDNA probes, detaching the short ssDNA probes from GO and recovering the fluorescent signals. Under optimal conditions, we employed our GO-CRISPR system for the detection of Salmonella Typhimurium (S. Typhimurium) with a detection sensitivity of as low as 3 × 103 CFU/mL in human serum, as well as a good detection specificity toward other competing bacteria. In addition, the GO-CRISPR biosensor exhibited excellent sensitivity to the detection of S. Typhimurium in spiked human serum. The GO-CRISPR system offers superior rapidity for the detection of sepsis-inducing bacteria and has the potential to enhance the early detection of bacterial infections in resource-limited settings, expediting the response for patients at risk of sepsis.


Assuntos
Infecções Bacterianas , Técnicas Biossensoriais , Grafite , Sepse , Humanos , Sistemas CRISPR-Cas/genética , Sepse/diagnóstico , Bactérias , Corantes , Óxidos
4.
Trends Analyt Chem ; 1682023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37840598

RESUMO

Infectious diseases (such as sepsis, influenza, and malaria), caused by various pathogenic bacteria and viruses, are widespread across the world. Early and rapid detection of disease-related pathogens is necessary to reduce their spread in the world and prevent their potential global pandemics. The clustered regularly interspaced short palindromic repeats (CRISPR) technology, as the next-generation molecular diagnosis technique, holds immense promise in the detection of infectious diseases because of its remarkable advantages, including supreme flexibility, sensitivity, and specificity. While numerous CRISPR-based biosensors have been developed for application in environmental monitoring, food safety, and point-of-care diagnosis, there remains a critical need to summarize and explore their potential in human health. This review aims to address this gap by focusing on the latest advancements in CRISPR-based biosensors for infectious disease detection. We provide an overview of the current status, pre-amplification methods, the unique feature of each CRISPR system, and the design of CRISPR-based biosensing strategies to detect disease-associated nucleic acids. Last but not least, the review analyzes the current challenges and provides future perspectives, which will contribute to developing more effective CRISPR-based biosensors for human health.

5.
ACS Appl Mater Interfaces ; 15(31): 37184-37192, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37489943

RESUMO

The accurate and effective detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential to preventing the spread of infectious diseases and ensuring human health. Herein, a nanobody-displayed whole-cell biosensor was developed for colorimetric detection of SARS-CoV-2 spike proteins. Serving as bioreceptors, yeast surfaces were genetically engineered to display SARS-CoV-2 binding of llama-derived single-domain antibodies (nanobodies) with high capture efficiency, facilitating the concentration and purification of SARS-CoV-2. Gold nanoparticles (AuNPs) employed as signal transductions were functionalized with horseradish peroxidase (HRP) and anti-SARS monoclonal antibodies to enhance the detection sensitivity. In the presence of SARS-CoV-2 spike proteins, the sandwiched binding will be formed by linking engineered yeast, SARS-CoV-2 spike proteins, and reporter AuNPs. The colorimetric signal was generated by the enzymatic reaction of HRP and its corresponding colorimetric substrate/chromogen system. At the optimal conditions, the developed whole-cell biosensor enables the sensitive detection of SARS-CoV-2 spike proteins in a linear range from 0.01 to 1 µg/mL with a limit of detection (LOD) of 0.037 µg/mL (about 4 × 108 virion particles/mL). Furthermore, the whole-cell biosensor was demonstrated to detect the spike protein of different SARS-CoV-2 variants in human serum, providing new possibilities for the detection of future SARS-CoV-2 variants.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , COVID-19/diagnóstico , Colorimetria , Ouro , SARS-CoV-2 , Saccharomyces cerevisiae , Glicoproteína da Espícula de Coronavírus , Peroxidase do Rábano Silvestre
6.
J Agric Food Chem ; 71(22): 8665-8672, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37227100

RESUMO

Human noroviruses pose grave threats to public health and economy. In this study, we genetically engineered yeast (Saccharomyces cerevisiae EBY100) to display specific norovirus-binding nanobodies (Nano-26 and Nano-85) on cell surface to facilitate the concentration of noroviruses for improved detection. Binding of norovirus virus-like particles (VLPs) to these nanobody-displaying yeasts was confirmed and characterized using confocal microscopy and flow cytometry. The ability of our engineered yeasts to capture norovirus VLPs can reach up to 91.3%. Furthermore, this approach was applied to concentrate and detect norovirus VLPs in a real food matrix. A wide linear detection range (1-104 pg/g) was observed, and the detection limit on spiked spinach was calculated as low as 0.071 pg/g. Overall, our engineered yeasts could be a promising approach to concentrate and purify noroviruses in food samples for easy detection, which allows us to prevent the spread of food-borne virus in the food supply chain.


Assuntos
Norovirus , Anticorpos de Domínio Único , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/química , Norovirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...