Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 41(18): 2893-2904, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37012117

RESUMO

Vaccines are an essential tool for the control of viral infections in domestic animals. We generated recombinant vector herpesvirus of turkeys (vHVT) vaccines expressing computationally optimized broadly reactive antigen (COBRA) H5 of avian influenza virus (AIV) alone (vHVT-AI) or in combination with virus protein 2 (VP2) of infectious bursal disease virus (IBDV) (vHVT-IBD-AI) or fusion (F) protein of Newcastle disease virus (NDV) (vHVT-ND-AI). In vaccinated chickens, all three vHVT vaccines provided 90-100% clinical protection against three divergent clades of high pathogenicity avian influenza viruses (HPAIVs), and significantly decreased number of birds and oral viral shedding titers at 2 days post-challenge compared to shams. Four weeks after vaccination, most vaccinated birds had H5 hemagglutination inhibition antibody titers, which significantly increased post-challenge. The vHVT-IBD-AI and vHVT-ND-AI vaccines provided 100% clinical protection against IBDVs and NDV, respectively. Our findings demonstrate that multivalent HVT vector vaccines were efficacious for simultaneous control of HPAIV and other viral infections.


Assuntos
Infecções por Birnaviridae , Herpesviridae , Vírus da Doença Infecciosa da Bursa , Vírus da Influenza A , Influenza Aviária , Doença de Newcastle , Doenças das Aves Domésticas , Vacinas Virais , Animais , Vírus da Doença de Newcastle/genética , Doença de Newcastle/prevenção & controle , Galinhas , Perus , Virulência , Vacinas Sintéticas/genética , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/veterinária , Herpesvirus Meleagrídeo 1/genética , Vacinas Combinadas , Doenças das Aves Domésticas/prevenção & controle
2.
Vaccine ; 39(14): 1933-1942, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33715903

RESUMO

The genetic and antigenic drift associated with the high pathogenicity avian influenza (HPAI) viruses of Goose/Guangdong (Gs/GD) lineage and the emergence of vaccine-resistant field viruses underscores the need for a broadly protective H5 influenza A vaccine. Here, we tested experimental vector herpesvirus of turkey (vHVT)-H5 vaccines containing either wild-type clade 2.3.4.4A-derived H5 inserts or computationally optimized broadly reactive antigen (COBRA) inserts with challenge by homologous and genetically divergent H5 HPAI Gs/GD lineage viruses in chickens. Direct assessment of protection was confirmed for all the tested constructs, which provided clinical protection against the homologous and heterologous H5 HPAI Gs/GD challenge viruses and significantly decreased oropharyngeal shedding titers compared to the sham vaccine. The cross reactivity was assessed by hemagglutinin inhibition (HI) and focus reduction assay against a panel of phylogenetically and antigenically diverse H5 strains. The COBRA-derived H5 inserts elicited antibody responses against antigenically diverse strains, while the wild-type-derived H5 vaccines elicited protection mostly against close antigenically related clades 2.3.4.4A and 2.3.4.4D viruses. In conclusion, the HVT vector, a widely used replicating vaccine platform in poultry, with H5 insert provides clinical protection and significant reduction of viral shedding against homologous and heterologous challenge. In addition, the COBRA-derived inserts have the potential to be used against antigenically distinct co-circulating viruses and future drift variants.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Influenza Aviária , Doença de Marek , Animais , Anticorpos Antivirais , Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Hemaglutininas , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/prevenção & controle , Doença de Marek/prevenção & controle , Vacinas Sintéticas/genética , Virulência
3.
PLoS One ; 8(10): e76139, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146829

RESUMO

Entry of HIV-1 into target cells requires binding of the viral envelope glycoprotein (Env) to cellular receptors and subsequent conformational changes that culminates in fusion of viral and target cell membranes. Recent structural information has revealed that these conformational transitions are regulated by three conserved but potentially flexible layers stacked between the receptor-binding domain (gp120) and the fusion arm (gp41) of Env. We hypothesized that artificial insertion of a covalent bond will 'snap' Env into a conformation that is less mobile and stably expose conserved sites. Therefore, we analyzed the interface between these gp120 layers (layers 1, 2 and 3) and identified residues that may form disulfide bonds when substituted with cysteines. We subsequently probed the structures of the resultant mutant gp120 proteins by assaying their binding to a variety of ligands using Surface Plasmon Resonance (SPR) assay. We found that a single disulfide bond strategically inserted between the highly conserved layers 1 and 2 (C65-C115) is able to 'lock' gp120 in a CD4 receptor bound conformation (in the absence of CD4), as indicated by the lower dissociation constant (Kd) for the CD4-induced (CD4i) epitope binding 17b antibody. When disulfide-stabilized monomeric (gp120) and trimeric (gp140) Envs were used to immunize rabbits, they were found to elicit a higher proportion of antibodies directed against both CD4i and CD4 binding site epitopes than the wild-type proteins. These results demonstrate that structure-guided stabilization of inter-layer interactions within HIV-1 Env can be used to expose conserved epitopes and potentially overcome the sequence diversity of these molecules.


Assuntos
Antígenos CD4/imunologia , Dissulfetos/química , Epitopos/imunologia , Proteína gp120 do Envelope de HIV/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Animais , Anticorpos/metabolismo , Sítios de Ligação , Antígenos CD4/química , Antígenos CD4/genética , Epitopos/química , Epitopos/genética , Feminino , Proteína gp120 do Envelope de HIV/administração & dosagem , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/química , HIV-1/genética , HIV-1/imunologia , Humanos , Imunização , Ligantes , Modelos Moleculares , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Coelhos , Ressonância de Plasmônio de Superfície , Produtos do Gene env do Vírus da Imunodeficiência Humana/administração & dosagem , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
4.
PLoS Pathog ; 7(6): e1002101, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21731494

RESUMO

Human immunodeficiency virus (HIV-1) enters cells following sequential activation of the high-potential-energy viral envelope glycoprotein trimer by target cell CD4 and coreceptor. HIV-1 variants differ in their requirements for CD4; viruses that can infect coreceptor-expressing cells that lack CD4 have been generated in the laboratory. These CD4-independent HIV-1 variants are sensitive to neutralization by multiple antibodies that recognize different envelope glycoprotein epitopes. The mechanisms underlying CD4 independence, global sensitivity to neutralization and the association between them are still unclear. By studying HIV-1 variants that differ in requirements for CD4, we investigated the contribution of CD4 binding to virus entry. CD4 engagement exposes the coreceptor-binding site and increases the "intrinsic reactivity" of the envelope glycoproteins; intrinsic reactivity describes the propensity of the envelope glycoproteins to negotiate transitions to lower-energy states upon stimulation. Coreceptor-binding site exposure and increased intrinsic reactivity promote formation/exposure of the HR1 coiled coil on the gp41 transmembrane glycoprotein and allow virus entry upon coreceptor binding. Intrinsic reactivity also dictates the global sensitivity of HIV-1 to perturbations such as exposure to cold and the binding of antibodies and small molecules. Accordingly, CD4 independence of HIV-1 was accompanied by increased susceptibility to inactivation by these factors. We investigated the role of intrinsic reactivity in determining the sensitivity of primary HIV-1 isolates to inhibition. Relative to the more common neutralization-resistant ("Tier 2-like") viruses, globally sensitive ("Tier 1") viruses exhibited increased intrinsic reactivity, i.e., were inactivated more efficiently by cold exposure or by a given level of antibody binding to the envelope glycoprotein trimer. Virus sensitivity to neutralization was dictated both by the efficiency of inhibitor/antibody binding to the envelope glycoprotein trimer and by envelope glycoprotein reactivity to the inhibitor/antibody binding event. Quantitative differences in intrinsic reactivity contribute to HIV-1 strain variability in global susceptibility to neutralization and explain the long-observed relationship between increased inhibitor sensitivity and decreased entry requirements for target cell CD4.


Assuntos
HIV-1/patogenicidade , Internalização do Vírus , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Variação Genética , Anticorpos Anti-HIV , Infecções por HIV , Humanos , Testes de Neutralização , Receptores Virais/metabolismo
5.
J Am Chem Soc ; 133(10): 3230-3, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21341746

RESUMO

A fully synthetic trivalent mimotope of gp120 conjugated to pan allelic HLA DR binding epitope was prepared using solid-phase peptide synthesis and optimized copper-catalyzed azide-alkyne cycloaddition. The methodology efficiently provides chemically uniform heteromultimeric peptide constructs with enhanced binding, avidity, and specificity toward an established HIV-neutralizing human antibody, MAb b12. The versatile synthetic strategy serves as a powerful platform for the development of synthetic peptides as potential HIV-1 vaccine candidates.


Assuntos
Epitopos de Linfócito T/química , Proteína gp120 do Envelope de HIV/síntese química , Antígenos HLA-DR/química , Epitopos Imunodominantes/química , Peptídeos/síntese química , Sequência de Aminoácidos , Epitopos de Linfócito T/imunologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/imunologia , Antígenos HLA-DR/imunologia , Epitopos Imunodominantes/imunologia , Vacinas Antimaláricas/química , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
6.
Mol Cell ; 37(5): 656-67, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20227370

RESUMO

The entry of human immunodeficiency virus (HIV-1) into cells is initiated by binding of the gp120 exterior envelope glycoprotein to the receptor, CD4. How does CD4 binding trigger conformational changes in gp120 that allow the gp41 transmembrane envelope glycoprotein to mediate viral-cell membrane fusion? The transition from the unliganded to the CD4-bound state is regulated by two potentially flexible topological layers (layers 1 and 2) in the gp120 inner domain. Both layers apparently contribute to the noncovalent association of unliganded gp120 with gp41. After CD4 makes initial contact with the gp120 outer domain, layer 1-layer 2 interactions strengthen gp120-CD4 binding by reducing the off rate. Layer 1-layer 2 interactions also destabilize the activated state induced on HIV-1 by treatment with soluble CD4. Thus, despite lack of contact with CD4, the gp120 inner-domain layers govern CD4 triggering by participating in conformational transitions within gp120 and regulating the interaction with gp41.


Assuntos
Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Internalização do Vírus , Animais , Antígenos CD4/genética , Cães , Genótipo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , Protease de HIV/metabolismo , HIV-1/genética , HIV-1/imunologia , Células HeLa , Humanos , Ligantes , Modelos Moleculares , Mutação , Fenótipo , Ligação Proteica , Conformação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Receptores CCR5/metabolismo , Relação Estrutura-Atividade , Transfecção
7.
J Virol ; 83(17): 8364-78, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19535453

RESUMO

Binding to the primary receptor CD4 induces conformational changes in the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein that allow binding to the coreceptor (CCR5 or CXCR4) and ultimately trigger viral membrane-cell membrane fusion mediated by the gp41 transmembrane envelope glycoprotein. Here we report the derivation of an HIV-1 gp120 variant, H66N, that confers envelope glycoprotein resistance to temperature extremes. The H66N change decreases the spontaneous sampling of the CD4-bound conformation by the HIV-1 envelope glycoproteins, thus diminishing CD4-independent infection. The H66N change also stabilizes the HIV-1 envelope glycoprotein complex once the CD4-bound state is achieved, decreasing the probability of CD4-induced inactivation and revealing the enhancing effects of soluble CD4 binding on HIV-1 infection. In the CD4-bound conformation, the highly conserved histidine 66 is located between the receptor-binding and gp41-interactive surfaces of gp120. Thus, a single amino acid change in this strategically positioned gp120 inner domain residue influences the propensity of the HIV-1 envelope glycoproteins to negotiate conformational transitions to and from the CD4-bound state.


Assuntos
Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/fisiologia , Ligação Viral , Substituição de Aminoácidos , Linhagem Celular , Humanos , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Ligação Proteica , Conformação Proteica
8.
PLoS Pathog ; 5(4): e1000360, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19343205

RESUMO

Binding to the CD4 receptor induces conformational changes in the human immunodeficiency virus (HIV-1) gp120 exterior envelope glycoprotein. These changes allow gp120 to bind the coreceptor, either CCR5 or CXCR4, and prime the gp41 transmembrane envelope glycoprotein to mediate virus-cell membrane fusion and virus entry. Soluble forms of CD4 (sCD4) and small-molecule CD4 mimics (here exemplified by JRC-II-191) also induce these conformational changes in the HIV-1 envelope glycoproteins, but typically inhibit HIV-1 entry into CD4-expressing cells. To investigate the mechanism of inhibition, we monitored at high temporal resolution inhibitor-induced changes in the conformation and functional competence of the HIV-1 envelope glycoproteins that immediately follow engagement of the soluble CD4 mimics. Both sCD4 and JRC-II-191 efficiently activated the envelope glycoproteins to mediate infection of cells lacking CD4, in a manner dependent on coreceptor affinity and density. This activated state, however, was transient and was followed by spontaneous and apparently irreversible changes of conformation and by loss of functional competence. The longevity of the activated intermediate depended on temperature and the particular HIV-1 strain, but was indistinguishable for sCD4 and JRC-II-191; by contrast, the activated intermediate induced by cell-surface CD4 was relatively long-lived. The inactivating effects of these activation-based inhibitors predominantly affected cell-free virus, whereas virus that was prebound to the target cell surface was mainly activated, infecting the cells even at high concentrations of the CD4 analogue. These results demonstrate the ability of soluble CD4 mimics to inactivate HIV-1 by prematurely triggering active but transient intermediate states of the envelope glycoproteins. This novel strategy for inhibition may be generally applicable to high-potential-energy viral entry machines that are normally activated by receptor binding.


Assuntos
Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Animais , Antígenos CD4/farmacologia , Células COS , Linhagem Celular , Chlorocebus aethiops , Proteína gp120 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/fisiologia , Humanos , Mimetismo Molecular , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Temperatura , Ligação Viral
9.
J Virol ; 83(9): 4476-88, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19211747

RESUMO

The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein trimer consists of gp120 and gp41 subunits and undergoes a series of conformational changes upon binding to the receptors, CD4 and CCR5/CXCR4, that promote virus entry. Surprisingly, we found that the envelope glycoproteins of some HIV-1 strains are functionally inactivated by prolonged incubation on ice. Serial exposure of HIV-1 to extremes of temperature, followed by expansion of replication-competent viruses, allowed selection of a temperature-resistant virus. The envelope glycoproteins of this virus resisted cold inactivation due to a single passage-associated change, H66N, in the gp120 exterior envelope glycoprotein. Histidine 66 is located within the gp41-interactive inner domain of gp120 and, in other studies, has been shown to decrease the sampling of the CD4-bound conformation by unliganded gp120. Substituting asparagine or other amino acid residues for histidine 66 in cold-sensitive HIV-1 envelope glycoproteins resulted in cold-stable phenotypes. Cold inactivation of the HIV-1 envelope glycoproteins occurred even at high pH, indicating that protonation of histidine 66 is not necessary for this process. Increased exposure of epitopes in the ectodomain of the gp41 transmembrane envelope glycoprotein accompanied cold inactivation, but shedding of gp120 did not. An amino acid change in gp120 (S375W) that promotes the CD4-bound state or treatment with soluble CD4 or a small-molecule CD4 mimic resulted in increased cold sensitivity. These results indicate that the CD4-bound intermediate of the HIV-1 envelope glycoproteins is cold labile; avoiding the CD4-bound state increases temperature stability.


Assuntos
Temperatura Baixa , HIV-1/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Linhagem Celular , Epitopos/imunologia , HIV-1/genética , HIV-1/imunologia , Histidina/genética , Histidina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Mutação/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
10.
Virology ; 313(1): 117-25, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12951026

RESUMO

The inner domain of the human immunodeficiency virus (HIV-1) gp120 glycoprotein has been proposed to mediate the noncovalent interaction with the gp41 transmembrane envelope glycoprotein. We used mutagenesis to investigate the functional importance of a conserved beta-sandwich located within the gp120 inner domain. Changes in aliphatic residues lining a hydrophobic groove on the surface of the beta-sandwich decreased the association of the gp120 and gp41 glycoproteins. Other changes in the base of the hydrophobic groove resulted in envelope glycoproteins that were structurally intact and able to bind receptors, but were inefficient in mediating either syncytium formation or virus entry. These results support a model in which the beta-sandwich in the gp120 inner domain contributes to gp120-gp41 contacts, thereby maintaining the integrity of the envelope glycoprotein complex and allowing adjustments in the gp120-gp41 interaction required for membrane fusion.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1 , Linhagem Celular , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp41 do Envelope de HIV/genética , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...