Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 4: 270, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23888163

RESUMO

Limited information is available on the effects of foliar boron (B) application on soybean seed composition. The objective of this research was to investigate the effects of foliar B on seed composition (protein, oil, fatty acids, and sugars). Our hypothesis was that since B is involved in nitrogen and carbon metabolism, it may impact seed composition. A repeated greenhouse experiment was conducted where half of the soybean plants was exposed to water stress (WS) and the other half was well-watered. Foliar boron (FB) in the form of boric acid was applied twice at a rate of 1.1 kg ha(-1). The first application was during flowering stage, and the second application was during seed-fill stage. Treatments were water stressed plants with no FB (WS-B); water stressed plants with FB (WS+B); watered plants without FB (W-B), and watered plants with FB (W+B). The treatment W-B was used as a control. Comparing with WS-B plants, B concentration was the highest in leaves and seed of W+B plants (84% increase in leaves and 73% in seed). Seeds of W+B plants had higher protein (11% increase), oleic acid (27% increase), sucrose (up to 40% increase), glucose, and fructose comparing with W-B. However, seed stachyose concentrations increased by 43% in WS-B plants seed compared with W-B plants. Cell wall (structural) B concentration in leaves was higher in all plants under water stress, especially in WS-B plants where the percentage of cell wall B reached up to 90%. Water stress changed seed δ(15)N and δ(13)C values in both B applied and non-B applied plants, indicating possible effects on nitrogen and carbon metabolism. This research demonstrated that FB increased B accumulation in leaves and seed, and altered seed composition of well-watered and water stressed plants, indicating a possible involvement of B in seed protein, and oleic and linolenic fatty acids. Further research is needed to explain mechanisms of B involvement in seed protein and fatty acids.

2.
J Biomed Biotechnol ; 2004(1): 52-60, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15123888

RESUMO

Soybean seeds contain large amounts of isoflavones or phytoestrogens such as genistein, daidzein, and glycitein that display biological effects when ingested by humans and animals. In seeds, the total amount, and amount of each type, of isoflavone varies by 5 fold between cultivars and locations. Isoflavone content and quality are one key to the biological effects of soy foods, dietary supplements, and nutraceuticals. Previously we had identified 6 loci (QTL) controlling isoflavone content using 150 DNA markers. This study aimed to identify and delimit loci underlying heritable variation in isoflavone content with additional DNA markers. We used a recombinant inbred line (RIL) population ( $n=100$ ) derived from the cross of “Essex” by “Forrest,” two cultivars that contrast for isoflavone content. Seed isoflavone content of each RIL was determined by HPLC and compared against 240 polymorphic microsatellite markers by one-way analysis of variance. Two QTL that underlie seed isoflavone content were newly discovered. The additional markers confirmed and refined the positions of the six QTL already reported. The first new region anchored by the marker BARC-Satt063 was significantly associated with genistein ( $P=0.009$, $Rcirc;2=29.5\%$ ) and daidzein ( $P=0.007$, $Rcirc;2=17.0\%$ ). The region is located on linkage group B2 and derived the beneficial allele from Essex. The second new region defined by the marker BARC-Satt129 was significantly associated with total glycitein ( $P=0.0005$, $Rcirc;2=32.0\%$ ). The region is located on linkage group D1a+Q and also derived the beneficial allele from Essex. Jointly the eight loci can explain the heritable variation in isoflavone content. The loci may be used to stabilize seed isoflavone content by selection and to isolate the underlying genes.

3.
Crop Sci ; 42(1): 271-277, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11756285

RESUMO

Molecular makers linked to quantitative trait loci (QTL) can assist soybean [Glycine max (L.) Merr.] breeders to combine traits of low heritability, such as yield, with disease resistance. The objective of this study was to identify markers linked to yield QTL in two recombinant inbred line (RIL) populations ['Essex' x 'Forrest' (ExF; n = 100) and 'Flyer' x 'Hartwig' (FxH; n = 94)] that also segregate for soybean cyst nematode (SCN) resistance genes (rhg1 and Rhg4). Each population was yield tested in four environments between 1996 and 1999. The resistant parents produced lower yields. Heritability of yield across four environments was 47% for ExF and 57% for FxH. Yield was normally distributed in both populations. High yielding, SCN resistant transgressive segregants were not observed. In the ExF RIL population, 134 microsatellite markers were compared against yield by ANOVA and MAPMAKER QTL. Regions associated with yield were identified by SATT294 on linkage group (LG.) C1 (P = 0.006, R(2) = 10%), SATT440 on LG. I (P = 0.007, R(2) = 10%), and SATT337 on LG. K (P = 0.004, R(2) = 10%). Essex provided the beneficial allele at SATT337. Mean yields among FxH RILs were compared against 33 microsatellite markers from LG. K. In addition 136 markers from randomly selected LGs were compared with extreme phenotypes by bulk segregant analysis. Two regions on LG. K (20 cM apart) associated with yield were identified by SATT326 (P = 0.0004, R(2) = 15%) and SATT539 (P = 0.0008, R(2) = 14%). Flyer provided both beneficial alleles. Both populations revealed a yield QTL in the interval (5 cM) between SATT337 and SATT326. These populations may share a common allele for yield in this region, given that about 40% of Flyer genome derived from Essex.

4.
Theor Appl Genet ; 104(2-3): 294-300, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12582700

RESUMO

Soybean [ Glycine max (L.) Merr.] sudden death syndrome (SDS) caused by Fusarium solani f. sp. glycines results in severe yield losses. Resistant cultivars offer the most-effective protection against yield losses but resistant cultivars such as 'Forrest' and 'Pyramid' vary in the nature of their response to SDS. Loci underlying SDS resistance in 'Essex' x Forrest are well defined. Our objectives were to identify and characterize loci and alleles that underlie field resistance to SDS in Pyramidx'Douglas'. SDS disease incidence and disease severity were determined in replicated field trials in six environments over 4 years. One hundred and twelve polymorphic DNA markers were compared with SDS disease response among 90 recombinant inbred lines from the cross PyramidxDouglas. Two quantitative trait loci (QTLs) for resistance to SDS derived their beneficial alleles from Pyramid, identified on linkage group G by BARC-Satt163 (261-bp allele, P=0.0005, R(2)=16.0%) and linkage group N by BARC-Satt080 (230-bp allele, P=0.0009, R(2)=15.6%). Beneficial alleles of both QTLs were previously identified in Forrest. A QTL for re- sistance to SDS on linkage group C2 identified by BARC-Satt307 (292-bp allele, P=0.0008, R(2)=13.6%) derived the beneficial allele from Douglas. A beneficial allele of this QTL was previously identified in Essex. Recombinant inbred lines that carry the beneficial alleles for all three QTLs for resistance to SDS were significantly ( P

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...