Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 110(1): 36-50.e5, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34793694

RESUMO

Although the classic symptoms of Huntington's disease (HD) manifest in adulthood, neural progenitor cell behavior is already abnormal by 13 weeks' gestation. To determine how these developmental defects evolve, we turned to cell and mouse models. We found that layer II/III neurons that normally connect the hemispheres are limited in their growth in HD by microtubule bundling defects within the axonal growth cone, so that fewer axons cross the corpus callosum. Proteomic analyses of the growth cones revealed that NUMA1 (nuclear/mitotic apparatus protein 1) is downregulated in HD by miR-124. Suppressing NUMA1 in wild-type cells recapitulates the microtubule and axonal growth defects of HD, whereas raising NUMA1 levels with antagomiR-124 or stabilizing microtubules with epothilone B restores microtubule organization and rescues axonal growth. NUMA1 therefore regulates the microtubule network in the growth cone, and HD, which is traditionally conceived as a disease of intracellular trafficking, also disturbs the cytoskeletal network.


Assuntos
Doença de Huntington , Animais , Axônios/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cones de Crescimento/fisiologia , Doença de Huntington/genética , Doença de Huntington/metabolismo , Camundongos , Microtúbulos/metabolismo , Proteômica
2.
Science ; 369(6505): 787-793, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32675289

RESUMO

Although Huntington's disease is a late-manifesting neurodegenerative disorder, both mouse studies and neuroimaging studies of presymptomatic mutation carriers suggest that Huntington's disease might affect neurodevelopment. To determine whether this is actually the case, we examined tissue from human fetuses (13 weeks gestation) that carried the Huntington's disease mutation. These tissues showed clear abnormalities in the developing cortex, including mislocalization of mutant huntingtin and junctional complex proteins, defects in neuroprogenitor cell polarity and differentiation, abnormal ciliogenesis, and changes in mitosis and cell cycle progression. We observed the same phenomena in Huntington's disease mouse embryos, where we linked these abnormalities to defects in interkinetic nuclear migration of progenitor cells. Huntington's disease thus has a neurodevelopmental component and is not solely a degenerative disease.


Assuntos
Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Sistema Nervoso/embriologia , Animais , Ciclo Celular , Endossomos/metabolismo , Feto , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Camundongos , Camundongos Mutantes , Mitose , Mutação , Células Neuroepiteliais/metabolismo , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...