Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 48: 109173, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37180878

RESUMO

Herein, we present a dataset based on the RNA-Seq analysis of liver tissue from bovine female fetuses at day 83 of gestation. The findings were reported in the main article, "Periconceptual maternal nutrition affects fetal liver programming of energy- and lipid-related genes" [1]. These data were generated to investigate the effects of periconceptual maternal vitamin and mineral supplementation and rates of body weight gain on the transcript abundance of genes associated with fetal hepatic metabolism and function. To this end, crossbred Angus beef heifers (n = 35) were randomly assigned to 1 of 4 treatments in a 2 × 2 factorial design. The main effects tested were vitamin and mineral supplementation (VTM or NoVTM - at least 71 days pre-breeding to day 83 of gestation) and rate of weight gain (low (LG - 0.28 kg/d) or moderate (MG - 0.79 kg/d) - from breeding to day 83). The fetal liver was collected on day 83 ± 0.27 of gestation. After total RNA isolation and quality control, strand-specific RNA libraries were prepared and sequenced on the Illumina® NovaSeq 6000 platform to generate paired-end 150-bp reads. After read mapping and counting, differential expression analysis was performed with edgeR. We identified 591 unique differentially expressed genes across all six vitamin-gain contrasts (FDR ≤ 0.1). To our knowledge, this is the first dataset investigating the fetal liver transcriptome in response to periconceptual maternal vitamin and mineral supplementation and/or the rate of weight gain. The data described in this article provides genes and molecular pathways differentially programming liver development and function.

2.
Animals (Basel) ; 13(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36830387

RESUMO

During pregnancy, the fetus relies on the dam for its nutrient supply. Nutritional stimuli during fetal organ development can program hepatic metabolism and function. Herein, we investigated the role of vitamin and mineral supplementation (VTM or NoVTM-at least 71 days pre-breeding to day 83 of gestation) and rate of weight gain (low (LG) or moderate (MG)-from breeding to day 83) on the fetal liver transcriptome and the underlying biological pathways. Crossbred Angus beef heifers (n = 35) were randomly assigned to one of four treatments in a 2 × 2 factorial design (VTM_LG, VTM_MG, NoVTM_LG, and NoVTM_MG). Gene expression was measured with RNA-Seq in fetal livers collected on day 83 ± 0.27 of gestation. Our results show that vitamin and mineral supplementation and rate of weight gain led to the differential expression of hepatic genes in all treatments. We identified 591 unique differentially expressed genes across all six VTM-gain contrasts (FDR ≤ 0.1). Over-represented pathways were related to energy metabolism, including PPAR and PI3K-Akt signaling pathways, as well as lipid metabolism, mineral transport, and amino acid transport. Our findings suggest that periconceptual maternal nutrition affects fetal hepatic function through altered expression of energy- and lipid-related genes.

3.
Metabolites ; 13(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36837794

RESUMO

Herein, we evaluated the hepatic lipid metabolic profiles of bovine fetuses in response to maternal vitamin and mineral supplementation (VMSUP; supplemented (VTM) or not (NoVTM)) and two different rates of gain (GAIN; low gain (LG), 0.28 kg/d, or moderate gain (MG), 0.79 kg/d). Crossbred Angus heifers (n = 35; initial BW = 359.5 ± 7.1 kg) were randomly assigned to a 2 × 2 factorial arrangement, resulting in the following treatment combinations: NoVTM-LG (n = 9), NoVTM-MG (n = 9), VTM-LG (n = 9), and VTM-MG (n = 8). Heifers received their treatments until d 83 of gestation, when they were ovariohysterectomized. Fetuses were harvested and liver samples were analyzed via ultrahigh-performance liquid chromatography-tandem mass spectroscopy to characterize lipid profiles and abundances. We identified 374 biochemicals/metabolites belonging to 57 sub-pathways of the lipid metabolism super-pathway. The majority of the biochemicals/metabolites (n = 152) were significantly affected by the main effect of GAIN. Maternal moderate rates of gain resulted in greater abundances (p ≤ 0.0001) of ω-3 fatty acids (eicosapentaenoate, docosapentaenoate, and docosahexaenoate) and lower abundances (p ≤ 0.0001) of ω-6 fatty acids. Further, MG resulted in the accumulation of several diacylglycerols and depletion of the majority of the monoacylglycerols. Concentrations of nearly all acylcarnitines (p ≤ 0.03) were decreased in VTM-LG fetal livers compared to all other treatment combinations, indicating a greater rate of complete oxidation of fatty acids. Levels of secondary bile acids were impacted by VMSUP, being greater (p ≤ 0.0048) in NoVTM than in VTM fetal livers. Moreover, NoVTM combined with lower rate of gain resulted in greater concentrations of most secondary bile acid biochemicals/metabolites. These data indicate that maternal diet influenced and altered fetal hepatic lipid composition in the first trimester of gestation. Maternal body weight gain exerted a greater influence on fetal lipid profiles than vitamin and mineral supplementation. Specifically, lower rate of gain (0.28 kg/d) resulted in an increased abundance of the majority of the biochemicals/metabolites identified in this study.

4.
Metabolites ; 12(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36005568

RESUMO

The objective of this study was to evaluate the effects of feeding heifers a vitamin and mineral supplement and targeting divergent rates of weight gain during early gestation on the fetal liver amino acid, carbohydrate, and energy profile at d 83 of gestation. Seventy-two crossbred Angus heifers were randomly assigned in a 2 × 2 factorial arrangement to one of four treatments comprising the main effects of vitamin and mineral supplementation (VTM or NOVTM) and feeding to achieve different rates of weight gain (low gain [LG] 0.28 kg/day vs. moderate gain [MG] 0.79 kg/day). Thirty-five gestating heifers with female fetuses were ovariohysterectomized on d 83 of gestation and fetal liver was collected and analyzed by reverse phase UPLC-tandem mass spectrometry with positive and negative ion mode electrospray ionization, as well as by hydrophilic interaction liquid chromatography UPLC-MS/MS with negative ion mode ESI for compounds of known identity. The Glycine, Serine, and Threonine metabolism pathway and the Leucine, Isoleucine, and Valine metabolism pathway had a greater total metabolite abundance in the liver of the NOVTM-LG group and least in the VTM-LG group (p < 0.01). Finally, both the TCA Cycle and Oxidative Phosphorylation pathways within the Energy Metabolism superpathway were differentially affected by the main effect of VTM, where the TCA cycle metabolites were greater (p = 0.04) in the NOVTM fetal livers and the Oxidative Phosphorylation biochemicals were greater (p = 0.02) in the fetal livers of the VTM supplemented heifers. These data demonstrate that the majority of metabolites that are affected by rate of weight gain or vitamin/mineral supplementation are decreased in heifers on a greater rate of weight gain or vitamin/mineral supplementation.

5.
Animals (Basel) ; 12(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35953914

RESUMO

We evaluated the effects of vitamin and mineral supplementation (from pre-breeding to day 83 of gestation) and two rates of gain (from breeding to day 83 of gestation) on trace mineral concentrations in maternal and fetal liver, fetal muscle, and allantoic (ALF) and amniotic (AMF) fluids. Crossbred Angus heifers (n = 35; BW = 359.5 ± 7.1 kg) were randomly assigned to one of two vitamin and mineral supplementation treatments (VMSUP; supplemented (VTM) vs. unsupplemented (NoVTM)). The VMSUP factor was initiated 71 to 148 d before artificial insemination (AI), allowing time for the mineral status of heifers to be altered in advance of breeding. The VTM supplement (113 g·heifer−1·d−1) provided macro and trace minerals and vitamins A, D, and E to meet 110% of the requirements specified by the NASEM, and the NoVTM supplement was a pelleted product fed at a 0.45 kg·heifer−1·day−1 with no added vitamin and mineral supplement. At AI, heifers were assigned to one of two rates of gain treatments (GAIN; low gain (LG) 0.28 kg/d or moderate gain (MG) 0.79 kg/d) within their respective VMSUP groups. On d 83 of gestation fetal liver, fetal muscle, ALF, and AMF were collected. Liver biopsies were performed prior to VMSUP factor initiation, at the time of AI, and at the time of ovariohysterectomy. Samples were analyzed for concentrations of Se, Cu, Zn, Mo, Mn, and Co. A VMSUP × GAIN × day interaction was present for Se and Cu (p < 0.01 and p = 0.02, respectively), with concentrations for heifers receiving VTM being greater at AI and tissue collection compared with heifers not receiving VTM (p < 0.01). A VMSUP × day interaction (p = 0.01) was present for Co, with greater (p < 0.01) concentrations for VTM than NoVTM at the time of breeding. VTM-MG heifers had greater concentrations of Mn than all other treatments (VMSUP × GAIN, p < 0.01). Mo was greater (p = 0.04) for MG than LG, while Zn concentrations decreased throughout the experiment (p < 0.01). Concentrations of Se (p < 0.01), Cu (p = 0.01), Mn (p = 0.04), and Co (p = 0.01) were greater in fetal liver from VTM than NoVTM. Mo (p ≤ 0.04) and Co (p < 0.01) were affected by GAIN, with greater concentrations in fetal liver from LG than MG. In fetal muscle, Se (p = 0.02) and Zn (p < 0.01) were greater for VTM than NoVTM. Additionally, Zn in fetal muscle was affected by GAIN (p < 0.01), with greater concentrations in LG than MG. The ALF in VTM heifers (p < 0.01) had greater Se and Co than NoVTM. In AMF, trace mineral concentrations were not affected (p ≥ 0.13) by VMSUP, GAIN, or their interaction. Collectively, these data suggest that maternal nutrition pre-breeding and in the first trimester of gestation affects fetal reserves of some trace minerals, which may have long-lasting impacts on offspring performance and health.

6.
Animals (Basel) ; 12(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35883305

RESUMO

Thirty-five crossbred Angus heifers (initial BW = 359.5 ± 7.1 kg) were randomly assigned to a 2 × 2 factorial design to evaluate effects of vitamin and mineral supplementation [VMSUP; supplemented (VTM) vs. unsupplemented (NoVTM)] and different rates of gain [GAIN; low gain (LG), 0.28 kg/d, vs. moderate gain (MG), 0.79 kg/d] during the first 83 d of gestation on dam hormone and metabolic status, fetal tissue and organ mass, and concentration of glucose and fructose in fetal fluids. The VMSUP was initiated 71 to 148 d before artificial insemination (AI), allowing time for mineral status of heifers to be altered in advance of breeding. At AI heifers were assigned their GAIN treatment. Heifers received treatments until the time of ovariohysterectomy (d 83 ± 0.27 after AI). Throughout the experiment, serum samples were collected and analyzed for non-esterified fatty acids (NEFA), progesterone (P4), insulin, and insulin-like growth factor 1 (IGF-1). At ovariohysterectomy, gravid reproductive tracts were collected, measurements were taken, samples of allantoic (ALF) and amniotic (AMF) fluids were collected, and fetuses were dissected. By design, MG had greater ADG compared to LG (0.85 vs. 0.34 ± 0.04 kg/d, respectively; p < 0.01). Concentrations of NEFA were greater for LG than MG (p = 0.04) and were affected by a VMSUP × day interaction (p < 0.01), with greater concentrations for NoVTM on d 83. Insulin was greater for NoVTM than VTM (p = 0.01). A GAIN × day interaction (p < 0.01) was observed for IGF-1, with greater concentrations for MG on d 83. At d 83, P4 concentrations were greater for MG than LG (GAIN × day, p < 0.01), and MG had greater (p < 0.01) corpus luteum weights versus LG. Even though fetal BW was not affected (p ≥ 0.27), MG fetuses had heavier (p = 0.01) femurs than LG, and VTM fetuses had heavier (p = 0.05) livers than those from NoVTM. Additionally, fetal liver as a percentage of BW was greater in fetuses from VTM (P = 0.05; 3.96 ± 0.06% BW) than NoVTM (3.79 ± 0.06% BW), and from LG (p = 0.04; 3.96 ± 0.06% BW) than MG (3.78 ± 0.06% BW). A VMSUP × GAIN interaction was observed for fetal small intestinal weight (p = 0.03), with VTM-MG being heavier than VTM-LG. Therefore, replacement heifer nutrition during early gestation can alter the development of organs that are relevant for future offspring performance. These data imply that compensatory mechanisms are in place in the developing conceptus that can alter the growth rate of key metabolic organs possibly in an attempt to increase or decrease energy utilization.

7.
J Anim Sci ; 100(6)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35595509

RESUMO

Management strategies utilized during pre-breeding development of replacement heifers can impact fertility and the ovarian reserve. Angus-Hereford crossbred heifers (n = 233) were utilized over a 3-yr period to determine the effects of administration of a growth promoting implant at either branding or weaning on growth, reproduction, and ovarian development. Heifer calves were randomly assigned to one of three treatments: 1) nonimplanted controls (CON; n = 79), 2) implanted at approximately 2 mo of age (average calf age = 58 d) with Synovex-C (BIMP, n = 82), or 3) implanted at approximately 7 mo of age (average calf age = 210 d) with Synovex-C (WIMP; n = 72). In years 2 and 3, a subset of heifers (year 2 n = 16; year 3 n = 14) were unilaterally ovariectomized. Heifers implanted at 2 mo of age were heavier at weaning, yearling (mid-February; average calf age = 332 d), and at the beginning of the breeding season (P < 0.01) compared to CON and WIMP heifers. Average daily gain (ADG) was similar among treatments from weaning to yearling and weaning to the start of the breeding season (P ≥ 0.61); however, WIMP heifers had increased (P = 0.05) ADG from yearling to the start of the breeding season compared to BIMP heifers. Antral follicle count and reproductive tract scores were not influenced by implant treatment (P ≥ 0.18). Response to synchronization of estrus was increased (P = 0.02) in WIMP compared to CON heifers, with BIMP heifers similar to all other treatments. First service conception rates tended to be increased (P = 0.09) in CON heifers compared to WIMP heifers, with BIMP heifers similar to CON and WIMP. Final pregnancy rates were similar (P = 0.54) among treatments. A treatment × yr interaction was detected (P = 0.01) for the number of primordial follicles/section with increased primordial follicles in WIMP heifers in year 3 compared to BIMP and WIMP heifers in year 2 and CON heifers in year 3, as well as in BIMP compared to WIMP heifers in year 2. Utilization of growth promoting implants did not negatively impact postweaning reproductive development or compromise pregnancy rates in beef heifers. Based on these results, administration of a growth promoting Synovex-C implant at 2 mo of age may allow for increased body weight at weaning, without hindering reproductive performance.


Management of beef females during the first year of life can impact fertility and reproductive longevity. Cattle producers can improve calf weight gains by using growth promoting implants; however, to be applicable, they must not negatively impact heifer reproductive performance or development. Understanding the impact of growth promoting implants on growth, fertility, and reproductive development is important to determine if they can be utilized as an effective management strategy in heifers intended to be retained in the breeding herd. To determine if growth promoting implants influence fertility, 233 heifer calves either received no implant, a Synovex-C implant at 2 mo of age, or a Synovex-C implant at 7 mo of age. Implanting heifers at 2 mo of age increased body weight at weaning. Implanting heifers at 7 mo of age did not improve body weight gains. Implanting heifers at 2 or 7 mo of age resulted in similar pregnancy rates. By using a growth promoting implant at 2 mo of age in beef heifers, producers may be able to increase heifer weaning weight without negatively affecting reproductive development or pregnancy rates. Additional body weight at weaning may provide a profit advantage for heifers not retained as replacements.


Assuntos
Estro , Reprodução , Animais , Bovinos , Feminino , Fertilidade , Gravidez , Desmame , Aumento de Peso
8.
Genomics ; 114(2): 110274, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090995

RESUMO

The cotyledon and caruncle tissues provide a functional bridge between the fetus and the dam. However, the relationship between these tissues and the transcriptomic profile that underlies the tissue functions remains elusive. Herein we investigate the expression profile of cotyledon and caruncle from nulliparous beef heifers carrying female fetuses at day 83 of pregnancy to identify changes occurring across tissues that contribute to placental function and their tissue-specific roles. We identified 2654 differentially expressed genes [padj ≤ 0.05, abs(log2FC) ≥ 1], including nutrient transporters and paternally imprinted genes. We found key regulators of tissue function and differentiation, including FOXO4, GATA2, GATA3, and HAND1, rewired between the tissues. Finally, we shed light on the over-represented pathways related to immune tolerance, tissue differentiation and remodeling. Our findings highlighted the intricate and coordinated cross-talk between fetal-maternal tissues. They provided evidence of a fine-tuned gene regulatory network underlying pregnancy and tissue-specific function in the bovine placenta.


Assuntos
Redes Reguladoras de Genes , Placenta , Animais , Bovinos/genética , Feminino , Feto , Nutrientes , Placenta/metabolismo , Gravidez , Transcriptoma
9.
Transl Anim Sci ; 5(4): txab194, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729460

RESUMO

Two experiments were conducted to evaluate the impacts of bunk management on dry matter intake (DMI), growth performance, carcass characteristic, and hydrogen sulfide (H2S) concentrations in beef steers fed modified distillers grains with solubles (MDGS; DM basis). In Experiment 1, 139 steers (440.4 ± 31.0 kg) were randomly assigned to one of 16 pens with pen randomly assigned to one of two treatments: 1) Control (CON, bunks managed to be devoid of feed prior to feeding), or 2) Over-fed (OVF, bunks managed to have minimum of 2.54 cm of feed remaining each morning) during adaptation. Following adaptation all steers in Experiment 1 were transitioned to CON bunks and followed to finishing. In Experiment 2, 126 steers (445.4 ± 40.63 kg) were randomly assigned to one of 16 pens. Treatments in Experiment 2 were arranged in a 2 × 2 factorial and include the two bunk management strategies utilized in Experiment 1 (OVF or CON) and either 25% MDGS or 50% MDGS (DM basis). Ruminal H2S was measured via rumenocentesis during dietary adaptation. There were no differences (P ≥ 0.13) observed in either experiment for growth performance due to bunk management. In Experiment 1, OVF steers had greater (P = 0.001) DMI during adaptation; however, overall DMI was not different (P = 0.14) between treatments. In Experiment 2, DMI (d 0 to 104) tended to decrease (P = 0.09) with greater MDGS inclusion. Hot carcass weight, ribeye area, marbling score, and quality grade were not affected (P ≥ 0.48) by either bunk management or MDGS inclusion. In Experiment 2, back fat (1.30 vs. 1.17 ± 0.042 cm) and yield grade (3.2 vs. 3.0 ± 0.11) were greater (P = 0.03) for CON steers compared with OVF but were not affected (P = 0.59) by MDGS inclusion. In Experiment 1, H2S tended (P = 0.07) to be greater in steers on OVF compared with CON. In Experiment 2, bunk management strategy did not impact (P = 0.82) H2S concentrations. There was a MDGS inclusion × day interaction for H2S with steers fed 50% MDGS having greater (P < 0.01) H2S concentrations compared with steers fed 25% MDGS on d 28 and 35. Bunk management strategy during adaptation did not impact growth performance but did reduce intake in Experiment 1. Yield grade decreased when OVF bunk management was applied throughout Experiment 2. Response of H2S concentrations in the rumen were variable and likely influenced by inconsistencies in bunk management and resulting DMI during the early portions of the feedlot study.

10.
Genes (Basel) ; 12(3)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803164

RESUMO

Maternal nutrients are essential for proper fetal and placental development and function. However, the effects of vitamin and mineral supplementation under two rates of maternal weight gain on placental genome-wide gene expression have not been investigated so far. Furthermore, biological processes and pathways in the placenta that act in response to early maternal nutrition are yet to be elucidated. Herein, we examined the impact of maternal vitamin and mineral supplementation (from pre-breeding to day 83 post-breeding) and two rates of gain during the first 83 days of pregnancy on the gene expression of placental caruncles (CAR; maternal placenta) and cotyledons (COT; fetal placenta) of crossbred Angus beef heifers. We identified 267 unique differentially expressed genes (DEG). Among the DEGs from CAR, we identified ACAT2, SREBF2, and HMGCCS1 that underlie the cholesterol biosynthesis pathway. Furthermore, the transcription factors PAX2 and PAX8 were over-represented in biological processes related to kidney organogenesis. The DEGs from COT included SLC2A1, SLC2A3, SLC27A4, and INSIG1. Our over-representation analysis retrieved biological processes related to nutrient transport and ion homeostasis, whereas the pathways included insulin secretion, PPAR signaling, and biosynthesis of amino acids. Vitamin and mineral supplementation and rate of gain were associated with changes in gene expression, biological processes, and KEGG pathways in beef cattle placental tissues.


Assuntos
Redes Reguladoras de Genes/efeitos dos fármacos , Ganho de Peso na Gestação/efeitos dos fármacos , Minerais/administração & dosagem , Placenta/química , Vitaminas/administração & dosagem , Fenômenos Fisiológicos da Nutrição Animal , Animais , Transporte Biológico , Bovinos , Suplementos Nutricionais , Metabolismo Energético , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Estudo de Associação Genômica Ampla , Minerais/farmacologia , Gravidez , Análise de Sequência de RNA , Vitaminas/farmacologia
11.
Anim Reprod Sci ; 226: 106703, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33549887

RESUMO

Yearling Angus bulls (n = 36) were assigned one of three diets: 1) 60 % concentrate as corn (CON, 0.2 % S, 13.4 % CP; n = 12); 2) 60 % dried corn distiller's grains plus solubles (60DDGS 0.5 % S, 22.0 % CP; n = 12); 3) CON diet + equivalent sulfur of 60DDGS as CaSO4 (SULF, 0.5 % S, 13.9 % CP; n = 12) to evaluate effects of feeding 60 % DDGS or sulfur as CaSO4 on mineral and metabolite concentrations in serum and seminal plasma. Treatment × day interactions (P < 0.03) were observed for serum Cu, Se, and Mo. For Cu at d 112, lesser (P < 0.01) concentrations were observed in bulls fed the 60DDGS compared to SULF and CON diets. There were greater (P < 0.01) concentrations of Se at d 112 in bulls fed 60DDGS than CON and SULF diets. Concentrations of Mo were greater at d 56 and 112 (P < 0.01) in bulls fed CON compared to SULF and 60DDGS diets. In seminal plasma, there were treatment × day interactions (P < 0.02) for Cu and Mo. For Cu, at d 112, there was a lesser (P < 0.01) concentration in the bulls fed SULF compared to CON and 60DDGS diets. For Mo, there was a greater (P < 0.01) concentration in bulls fed the CON than 60DDGS and SULF diets at d 56 and 112. Changes in mineral and metabolite concentrations may have effects on bull reproductive performance when there is a relatively greater dietary sulfur content.


Assuntos
Ração Animal/análise , Sulfato de Cálcio/administração & dosagem , Bovinos , Dieta/veterinária , Minerais/sangue , Sêmen/química , Aminoácidos/química , Aminoácidos/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Sulfato de Cálcio/farmacologia , Suplementos Nutricionais , Glucose/química , Glucose/metabolismo , Masculino , Minerais/metabolismo , Ureia/metabolismo , Zea mays
12.
J Anim Sci ; 99(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33493276

RESUMO

The objective of this study was to evaluate the effects of feeding vitamin and mineral (VTM) supplement and (or) rate of gain (GAIN) during early gestation on amino acid (AA) concentrations in allantoic fluid (ALF) and amniotic fluid (AMF) and maternal serum. Seventy-two crossbred Angus heifers (initial BW = 359.5 ± 7.1 kg) were randomly assigned to one of four treatments in a 2 × 2 factorial arrangement with main effects of VTM supplement (VTM or NoVTM) and rate of gain (GAIN; low gain [LG], 0.28 kg/d, vs. moderate gain [MG], 0.79 kg/d). The VTM treatment (113 g•heifer-1•d-1, provided macro and trace minerals and vitamins A, D, and E to meet 110% of the requirements specified by the NASEM in Nutrient requirements of beef cattle. Washington, DC: The National Academies Press. doi:10.17226/19014, 2016) was initiated 71 to 148 d before artificial insemination (AI). To complete the factorial arrangement of treatments, at breeding heifers were either maintained on the basal diet (LG), or received MG diet which was implemented by adding a protein/energy supplement to the LG diet. Thirty-five gestating heifers with female fetuses were ovariohysterectomized on d 83 of gestation and maternal serum, ALF, and AMF were collected. Samples were analyzed for concentrations of neutral AA: Ala, Asn, Cys, Gln, Gly, Ile, Leu, Met, Phe, Pro, Ser, Thr, Trp, Tyr, and Val; cationic AA: Arg, His, and Lys; and anionic AA: Asp and Glu. In serum, a VTM × GAIN interaction (P = 0.02) was observed for Glu, with greater concentrations for VTM-LG than VTM-MG. Concentrations of serum Cys, Met, and Trp were greater (P ≤ 0.03) for MG than LG. In ALF, concentrations of Glu were affected by a VTM × GAIN interaction, where VTM-MG was greater (P < 0.01) than all other treatments. Further, ALF from VTM had increased (P ≤ 0.05) concentrations of His, Asp, and 12 of the 14 neutral AA; whereas GAIN affected concentrations of Arg, Cys, and Asp, with greater concentrations (P ≤ 0.05) in MG heifers. In AMF, AA concentrations were not affected (P ≥ 0.10) by VTM, GAIN, or their interaction. In conclusion, increased concentrations of AA in maternal serum and ALF of beef heifers were observed at d 83 of gestation in response to VTM supplementation and rate of gain of 0.79 kg/d, which raises important questions regarding the mechanisms responsible for AA uptake and balance between the maternal circulation and fetal fluid compartments.


Assuntos
Aminoácidos , Vitaminas , Sequência de Aminoácidos , Animais , Bovinos , Suplementos Nutricionais , Feminino , Minerais , Fragmentos de Peptídeos , Gravidez , Tripsina
13.
Theriogenology ; 162: 6-14, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33388726

RESUMO

The objectives of this study were to investigate the effects of feeding 60% dried corn distillers grains plus solubles (DDGS) or the equivalent sulfur as calcium sulfate (CaSO4) on semen quality and performance characteristics in yearling bulls. Thirty-six half-sibling Angus bulls [291 ± 8.5 d; initial body weight (BW) = 320 ± 2.7 kg] were assigned to one of three diets: 1) 60% concentrate as corn (CON; S = 0.18%; n = 12); 2) 60% DDGS replacing corn (60DDGS; S = 0.55% DM; n = 12); 3) CON + equivalent sulfur of 60DDGS added as CaSO4 (SULF; S = 0.54%; n = 12). Bulls were fed for 112 d to target an average daily gain (ADG) of 1.6 kg/d. Blood samples were collected on d 0, 56, and 112, and evaluated for testosterone, thyroxine, triiodothyronine (T3) and glutathione peroxidase (GPx) activity. Ruminal H2S was measured on d 0, 14, and 42. Scrotal circumference and semen were collected on d 0, 28, 56, 84, and 112 to evaluate sperm characteristics and GPx activity in seminal plasma. A computer assisted semen analysis was used to evaluate kinematic profiles in motile and progressive sperm throughout the study. Data were analyzed as repeated measures using MIXED procedures of SAS. No differences (P ≥ 0.14) were observed for final BW, ADG, or scrotal circumference; however, SULF tended (P = 0.07) to have reduced gain:feed compared with CON, with 60DDGS being intermediate. Concentrations of ruminal H2S on d 42 were greatest (P < 0.01) for SULF. Increased ejaculate volume was observed for 60DDGS and CON (P < 0.01) compared with SULF. For motile populations of sperm, velocity on an average path (VAP) and curvilinear velocity (VCL) were reduced (P ≤ 0.02) for SULF compared with CON, with 60DDGS being intermediate. In progressively motile sperm throughout the study, VAP and VSL were reduced (P ≤ 0.05) in 60DDGS and SULF compared to CON. For VCL, SULF was reduced (P ≤ 0.02) compared with CON, with 60DDGS being intermediate. In serum, concentrations of T3 were reduced (P = 0.009) in 60DDGS compared with CON or SULF. A treatment by day interaction (P = 0.03) was observed for seminal plasma GPx. At d 56, GPx activity was greater (P = 0.03) for 60DDGS compared with CON, with SULF intermediate; and at d 112, 60DDGS had the greatest (P ≤ 0.02) GPx activity. Therefore, feeding 60% DDGS to developing bulls altered semen kinematics, T3 concentrations, and GPx activity leading to the conclusion that these differences may not be solely dependent on concentrations of dietary sulfur.


Assuntos
Análise do Sêmen , Zea mays , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bovinos , Dieta/veterinária , Masculino , Reprodução , Análise do Sêmen/veterinária , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...