Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Thromb Res ; 211: 27-37, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35066204

RESUMO

INTRODUCTION: Defects of platelet functional responses in COVID-19 were reported, but their origin and pathophysiological significance are unclear. The objective of this study was to characterize the thrombocytopathy in COVID-19. MATERIALS AND METHODS: Analysis of platelet functional responses to activation by flow cytometry and aggregometry in 46 patients with confirmed COVID-19 of different severity (non-ICU, ICU, and ECMO) over the course of hospitalization alongside with plasma coagulation, inflammatory markers (CRP, fibrinogen, NETosis assays in smears) was performed. RESULTS AND CONCLUSIONS: All patients had increased baseline percentage of procoagulant platelets (healthy: 0.9 ± 0.5%; COVID-19: 1.7 ± 0.6%). Patients had decreased agonist-induced platelet GPIb shedding (1.8 ± 0.7 vs 1.25 ± 0.4), P-Selectin exposure (1.51 ± 0.21 vs 1.1 ± 0.3) and aggregation. The values of these parameters among the non-ICU and ICU cohorts differed modestly, while the ECMO cohort differed significantly. Only ECMO patients had pronounced thrombocytopenia. While inflammatory markers improved over time, the observed platelet functional responses changed only moderately. SARS-CoV-2 RNA was found in 8% of blood samples and it did not correlate with platelet counts or responses. All patients had increased NETosis that moderately correlated with platelet dysfunction. High cumulative dosages of LMWH (average > 12,000 IU/day over 5 days) resulted in an improvement in platelet parameters. The observed pattern of platelet refractoriness was reproduced by in vitro pre-treatment of washed platelets with subnanomolar thrombin or perfusion of blood through a collagen-covered flow chamber. We conclude that platelet dysfunction in COVID-19 is consistent with the intravascular-coagulation-induced refractoriness rather than with an inflammation-induced mechanism or a direct activation by the virus.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Trombocitopenia , Anticoagulantes , Plaquetas , COVID-19/complicações , Heparina de Baixo Peso Molecular , Humanos , RNA Viral , SARS-CoV-2 , Índice de Gravidade de Doença , Trombocitopenia/tratamento farmacológico
2.
Diagnostics (Basel) ; 11(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34441398

RESUMO

BACKGROUND: This paper demonstrates the use of optical diagnostic methods to assess the dynamic skin changes observed in acute and chronic exposure to ultraviolet (UV) radiation in vivo. METHODS: Firstly, in order to initiate photoaging (chronic UV exposure), animals (n = 40) were divided into two groups: chronic UV exposure (n = 30), and control (n = 10; without irradiation). Photoaging in animals was induced by chronic repeated exposure to UVA radiation three times per week, for 12 weeks continuously, while the UV dose increased stepwise over the course of the experiment (55 minimal erythema doses (MED) in total). Laser fluorescence spectroscopy (LFS), optical tissue oximetry (OTO), laser Doppler flowmetry (LDF), and optical coherence tomography (OCT) of the shaved dorsum skin were performed regularly, once per week until the conclusion of the study. At 0, 5, and 12 weeks of the experiment, histological examination of animal tissues using hematoxylin/eosin and Masson's trichrome staining was performed. At the second stage, erythema was induced in mice (n = 15) by acute UV exposure at high doses. The colorimetric assay of the image from a digital RGB camera was used to evaluate the erythema index. RESULTS: The tissue content index ηcollagen of collagen was appropriate for the characterization of skin photoaging. Significant differences (p < 0.05) in ηcollagen were found between the control and photoaging groups from the 5th to the 9th week of the experiment. In addition, the rate of collagen degradation in the control group was about half that of the photoaging group. This marker allows the differentiation of photo- and chronoaging. OCT revealed the main optical layers of the skin in compliance with the histological pattern. The analysis of the RGB camera images provided visualization of the acute skin reaction to UV radiation. CONCLUSIONS: This study demonstrates the applicability of optical methods for the quantitative assessment of acute and chronic skin effects of UV exposure in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...