Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(5): e62846, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23667529

RESUMO

The zebrafish (Danio rerio) has become one of the major animal models for in vivo examination of sensory and neuronal computation. Similar to Xenopus tadpoles neural activity in the optic tectum, the major region controlling visually guided behavior, can be examined in zebrafish larvae by optical imaging. Prerequisites of these approaches are usually the transparency of larvae up to a certain age and the use of two-photon microscopy. This principle of fluorescence excitation was necessary to suppress crosstalk between signals from individual neurons, which is a critical issue when using membrane-permeant dyes. This makes the equipment to study neuronal processing costly and limits the approach to the study of larvae. Thus there is lack of knowledge about the properties of neurons in the optic tectum of adult animals. We established a procedure to circumvent these problems, enabling in vivo calcium imaging in the optic tectum of adult zebrafish. Following local application of dextran-coupled dyes single-neuron activity of adult zebrafish can be monitored with conventional widefield microscopy, because dye labeling remains restricted to tens of neurons or less. Among the neurons characterized with our technique we found neurons that were selective for a certain pattern orientation as well as neurons that responded in a direction-selective way to visual motion. These findings are consistent with previous studies and indicate that the functional integrity of neuronal circuits in the optic tectum of adult zebrafish is preserved with our staining technique. Overall, our protocol for in vivo calcium imaging provides a useful approach to monitor visual responses of individual neurons in the optic tectum of adult zebrafish even when only widefield microscopy is available. This approach will help to obtain valuable insight into the principles of visual computation in adult vertebrates and thus complement previous work on developing visual circuits.


Assuntos
Cálcio/metabolismo , Corantes/metabolismo , Dextranos/metabolismo , Eletroporação , Análise de Célula Única/métodos , Colículos Superiores/citologia , Peixe-Zebra , Animais , Permeabilidade da Membrana Celular , Estudos de Viabilidade , Fenômenos Mecânicos , Microscopia de Fluorescência , Imagem Molecular , Neurônios/citologia , Neurônios/metabolismo , Análise de Célula Única/economia
2.
J Physiol Paris ; 107(1-2): 84-94, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22771549

RESUMO

Weakly electric fish orient, hunt and communicate by emitting electrical pulses, enabling them to discriminate objects, conspecifics and prey. In addition to the electrosensory modality - although dominating in importance in these fishes - other modalities, like vision, play important roles for survival. The visual system of Gnathonemus petersii, a member of the family mormyridae living in West African blackwater streams shows remarkable specializations: Cone photoreceptors are grouped in bundles within a light reflecting tapetum lucidum, while the rods are also bundled but located at the back within a light-scattering guanine layer. Such an organization does not improve light sensitivity nor does it provide high spatial resolution. Thus, the function of the grouped retinal arrangement for the visual performance of the fish remains unclear. Here we investigated the contrast sensitivity of the temporal transfer properties of the visual system of Gnathonemus. To do so, we analyzed visual evoked potentials in the optic tectum and tested the critical flicker fusion frequency in a behavioral paradigm. Results obtained in Gnathonemus are compared to results obtained with goldfish (Carassius auratus), revealing differences in the filter characteristics of their visual systems: While goldfish responds best to low frequencies, Gnathonemus responds best at higher frequencies. The visual system of goldfish shows characteristics of a low-pass filter while the visual system of Gnathonemus has characteristics of a band-pass filter. Furthermore we show that the visual system of Gnathonemus is more robust towards contrast reduction as compared to the goldfish. The grouped retina might enable Gnathonemus to see large, fast moving objects even under low contrast conditions. Due to the fact that the electric sense is a modality of limited range, it is tempting to speculate that the retinal specialization of Gnathonemus petersii might be advantageous for predator avoidance even when brightness differences are small.


Assuntos
Sensibilidades de Contraste/fisiologia , Peixe Elétrico/fisiologia , Potenciais Evocados Visuais/fisiologia , Retina/fisiologia , Vias Visuais/fisiologia , Animais , Comportamento de Escolha/fisiologia , Estimulação Luminosa , Tempo de Reação/fisiologia , Vias Visuais/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...