Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 62017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28470148

RESUMO

Impairment of peripheral nerve function is frequent in neurometabolic diseases, but mechanistically not well understood. Here, we report a novel disease mechanism and the finding that glial lipid metabolism is critical for axon function, independent of myelin itself. Surprisingly, nerves of Schwann cell-specific Pex5 mutant mice were unaltered regarding axon numbers, axonal calibers, and myelin sheath thickness by electron microscopy. In search for a molecular mechanism, we revealed enhanced abundance and internodal expression of axonal membrane proteins normally restricted to juxtaparanodal lipid-rafts. Gangliosides were altered and enriched within an expanded lysosomal compartment of paranodal loops. We revealed the same pathological features in a mouse model of human Adrenomyeloneuropathy, preceding disease-onset by one year. Thus, peroxisomal dysfunction causes secondary failure of local lysosomes, thereby impairing the turnover of gangliosides in myelin. This reveals a new aspect of axon-glia interactions, with Schwann cell lipid metabolism regulating the anchorage of juxtaparanodal Kv1-channels.


Assuntos
Axônios/enzimologia , Metabolismo dos Lipídeos , Lisossomos/metabolismo , Neuroglia/metabolismo , Doenças do Sistema Nervoso Periférico/fisiopatologia , Peroxissomos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/análise , Adrenoleucodistrofia/patologia , Animais , Axônios/ultraestrutura , Modelos Animais de Doenças , Humanos , Camundongos , Microscopia Eletrônica , Receptor 1 de Sinal de Orientação para Peroxissomos/deficiência
2.
Ann Clin Transl Neurol ; 2(8): 787-96, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26339673

RESUMO

OBJECTIVE: Pelizaeus-Merzbacher disease (PMD) is a progressive and lethal leukodystrophy caused by mutations affecting the proteolipid protein (PLP1) gene. The most common cause of PMD is a duplication of PLP1 and at present there is no curative therapy available. METHODS: By using transgenic mice carrying additional copies of Plp1, we investigated whether curcumin diet ameliorates PMD symptoms. The diet of Plp1 transgenic mice was supplemented with curcumin for 10 consecutive weeks followed by phenotypical, histological and immunohistochemical analyses of the central nervous system. Plp1 transgenic and wild-type mice fed with normal chow served as controls. RESULTS: Curcumin improved the motor phenotype performance of Plp1 transgenic mice by 50% toward wild-type level and preserved myelinated axons by 35% when compared to Plp1 transgenic controls. Furthermore, curcumin reduced astrocytosis, microgliosis and lymphocyte infiltration in Plp1 transgenic mice. Curcumin diet did not affect the pathologically increased Plp1 mRNA abundance. However, high glutathione levels indicating an oxidative misbalance in the white matter of Plp1 transgenic mice were restored by curcumin treatment. INTERPRETATION: Curcumin may potentially serve as an antioxidant therapy of PMD caused by PLP1 gene duplication.

3.
J Clin Invest ; 124(5): 1987-99, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24691440

RESUMO

Allan-Herndon-Dudley syndrome (AHDS), a severe form of psychomotor retardation with abnormal thyroid hormone (TH) parameters, is linked to mutations in the TH-specific monocarboxylate transporter MCT8. In mice, deletion of Mct8 (Mct8 KO) faithfully replicates AHDS-associated endocrine abnormalities; however, unlike patients, these animals do not exhibit neurological impairments. While transport of the active form of TH (T3) across the blood-brain barrier is strongly diminished in Mct8 KO animals, prohormone (T4) can still enter the brain, possibly due to the presence of T4-selective organic anion transporting polypeptide (OATP1C1). Here, we characterized mice deficient for both TH transporters, MCT8 and OATP1C1 (Mct8/Oatp1c1 DKO). Mct8/Oatp1c1 DKO mice exhibited alterations in peripheral TH homeostasis that were similar to those in Mct8 KO mice; however, uptake of both T3 and T4 into the brains of Mct8/Oatp1c1 DKO mice was strongly reduced. Evidence of TH deprivation in the CNS of Mct8/Oatp1c1 DKO mice included highly decreased brain TH content as well as altered deiodinase activities and TH target gene expression. Consistent with delayed cerebellar development and reduced myelination, Mct8/Oatp1c1 DKO mice displayed pronounced locomotor abnormalities. Intriguingly, differentiation of GABAergic interneurons in the cerebral cortex was highly compromised. Our findings underscore the importance of TH transporters for proper brain development and provide a basis to study the pathogenic mechanisms underlying AHDS.


Assuntos
Córtex Cerebral/metabolismo , Homeostase/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo , Animais , Neurônios GABAérgicos/metabolismo , Proteínas de Membrana Transportadoras/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Camundongos , Camundongos Knockout , Transportadores de Ácidos Monocarboxílicos , Hipotonia Muscular/genética , Hipotonia Muscular/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Simportadores , Tiroxina/genética , Tri-Iodotironina/genética
4.
Biochimie ; 98: 127-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24262602

RESUMO

Mutations of several genes encoding peroxisomal proteins have been associated with human diseases. Some of these display specific white matter abnormalities in the brain, although the affected proteins are ubiquitously expressed. To better understand the etiology of peroxisomal myelin diseases, we aimed to label these organelles in vivo and in a cell type specific fashion. We had previously shown that in oligodendrocytes and Schwann cells numerous peroxisomes reside in the cytoplasmic channels of "non-compacted" myelin. These organelles are smaller and biochemically distinct from non-myelin peroxisomes. Targeting peroxisomal functions in various cell types of the brain has demonstrated that oligodendroglial peroxisomes are specifically important for long-term integrity of the CNS. To visualize myelin peroxisomes in intact cells and tissues by live imaging, we have generated a novel line of transgenic mice for the expression of fluorescently tagged peroxisomes specifically in myelinating glia. This was achieved by modifying the gene for a photoconvertible mEos2 with a peroxisomal targeting signal type 1 (PTS1) and generating a fusion gene with the myelin-specific Cnp1 promoter. In the brain of resulting transgenic mice, peroxisomes are selectively labeled in oligodendrocytes. In this novel genetic tool, photoconversion of single peroxisomes from green to red fluorescence can be used to monitor the fate of single organelles and to determine the dynamics of PTS1-mediated protein import in the context of myelin diseases that affect peroxisomal functions.


Assuntos
Bainha de Mielina/metabolismo , Neuroglia/metabolismo , Oligodendroglia/metabolismo , Peroxissomos/metabolismo , Animais , Camundongos , Camundongos Transgênicos
5.
Biochimie ; 98: 111-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24120688

RESUMO

Peroxisomes are cellular compartments primarily associated with lipid metabolism. Most cell types, including nervous system cells, harbor several hundred of these organelles. The importance of peroxisomes for central nervous system white matter is evidenced by a variety of human peroxisomal disorders with neurological impairment frequently involving the white matter. Moreover, the most frequent childhood white matter disease, X-linked adrenoleukodystrophy, is a peroxisomal disorder. During the past decade advances in imaging techniques have enabled the identification of peroxisomes within the myelin sheath, especially close to nodes of Ranvier. Although the function of myelin peroxisomes is not solved yet on molecular level, recently acquired knowledge suggests a central role for these organelles in axo-glial metabolism. This review focuses on the biology of myelin peroxisomes as well as on the pathology of myelin and myelinated axons that is observed as a consequence of partial or complete peroxisomal dysfunction in the brain.


Assuntos
Bainha de Mielina/metabolismo , Peroxissomos/metabolismo , Adrenoleucodistrofia/patologia , Adrenoleucodistrofia/fisiopatologia , Animais , Axônios/metabolismo , Humanos , Camundongos , Neuroglia , Transtornos Peroxissômicos/patologia
6.
Neurobiol Dis ; 58: 258-69, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23777740

RESUMO

Although peroxisome biogenesis and ß-oxidation disorders are well known for their neurodevelopmental defects, patients with these disorders are increasingly diagnosed with neurodegenerative pathologies. In order to investigate the cellular mechanisms of neurodegeneration in these patients, we developed a mouse model lacking multifunctional protein 2 (MFP2, also called D-bifunctional protein), a central enzyme of peroxisomal ß-oxidation, in all neural cells (Nestin-Mfp2(-/-)) or in oligodendrocytes (Cnp-Mfp2(-/-)) and compared these models with an already established general Mfp2 knockout. Nestin-Mfp2 but not Cnp-Mfp2 knockout mice develop motor disabilities and ataxia, similar to the general mutant. Deterioration of motor performance correlates with the demise of Purkinje cell axons in the cerebellum, which precedes loss of Purkinje cells and cerebellar atrophy. This closely mimics spinocerebellar ataxias of patients affected with mild peroxisome ß-oxidation disorders. However, general knockouts have a much shorter life span than Nestin-Mfp2 knockouts which is paralleled by a disparity in activation of the innate immune system. Whereas in general mutants a strong and chronic proinflammatory reaction proceeds throughout the brain, elimination of MFP2 from neural cells results in minor neuroinflammation. Neither the extent of the inflammatory reaction nor the cerebellar degeneration could be correlated with levels of very long chain fatty acids, substrates of peroxisomal ß-oxidation. In conclusion, MFP2 has multiple tasks in the adult brain, including the maintenance of Purkinje cells and the prevention of neuroinflammation but this is not mediated by its activity in oligodendrocytes nor by its role in very long chain fatty acid degradation.


Assuntos
Deficiências Nutricionais/complicações , Encefalite/etiologia , Ácidos Graxos/metabolismo , Degeneração Neural/etiologia , Proteína Multifuncional do Peroxissomo-2/deficiência , Células de Purkinje/patologia , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/genética , Fatores Etários , Animais , Antígenos de Diferenciação/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica/genética , Locomoção/fisiologia , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Proteína Básica da Mielina/metabolismo , Nestina/genética , Proteína Multifuncional do Peroxissomo-2/genética
7.
Nature ; 485(7399): 517-21, 2012 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-22622581

RESUMO

Oligodendrocytes, the myelin-forming glial cells of the central nervous system, maintain long-term axonal integrity. However, the underlying support mechanisms are not understood. Here we identify a metabolic component of axon-glia interactions by generating conditional Cox10 (protoheme IX farnesyltransferase) mutant mice, in which oligodendrocytes and Schwann cells fail to assemble stable mitochondrial cytochrome c oxidase (COX, also known as mitochondrial complex IV). In the peripheral nervous system, Cox10 conditional mutants exhibit severe neuropathy with dysmyelination, abnormal Remak bundles, muscle atrophy and paralysis. Notably, perturbing mitochondrial respiration did not cause glial cell death. In the adult central nervous system, we found no signs of demyelination, axonal degeneration or secondary inflammation. Unlike cultured oligodendrocytes, which are sensitive to COX inhibitors, post-myelination oligodendrocytes survive well in the absence of COX activity. More importantly, by in vivo magnetic resonance spectroscopy, brain lactate concentrations in mutants were increased compared with controls, but were detectable only in mice exposed to volatile anaesthetics. This indicates that aerobic glycolysis products derived from oligodendrocytes are rapidly metabolized within white matter tracts. Because myelinated axons can use lactate when energy-deprived, our findings suggest a model in which axon-glia metabolic coupling serves a physiological function.


Assuntos
Axônios/fisiologia , Glicólise , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Potenciais de Ação , Alquil e Aril Transferases/deficiência , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Respiração Celular , Sobrevivência Celular , Doenças Desmielinizantes/enzimologia , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/enzimologia , Prótons , Células de Schwann/enzimologia , Células de Schwann/metabolismo , Fatores de Tempo
8.
Cereb Cortex ; 22(7): 1473-86, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21880656

RESUMO

To study the function of individual neurons that are embedded in a complex neural network is difficult in mice. Conditional mutagenesis permits the spatiotemporal control of gene expression including the ablation of cells by toxins. To direct expression of a tamoxifen-inducible variant of Cre recombinase (CreERT2) selectively to cortical neurons, we replaced the coding region of the murine Nex1 gene by CreERT2 cDNA via homologous recombination in embryonic stem cells. When injected with tamoxifen, adult NEX-CreERT2 mice induced reporter gene expression exclusively in projection neurons of the neocortex and hippocampus. By titrating the tamoxifen dosage, we achieved recombination in single cells, which allowed multiphoton imaging of neocortical neurons in live mice. When hippocampal projection neurons were genetically ablated by induced expression of diphteria toxin, within 20 days the inflammatory response included the infiltration of CD3+ T cells. This marks a striking difference from similar studies, in which dying oligodendrocytes failed to recruit cells of the adaptive immune system.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Toxina Diftérica/intoxicação , Integrases/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/fisiologia , Proteínas Recombinantes/metabolismo , Tamoxifeno/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sobrevivência Celular/efeitos dos fármacos , Genes Reporter , Integrases/genética , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Venenos/farmacologia , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos , Proteínas Recombinantes/genética
9.
FEBS Lett ; 585(14): 2205-11, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21620837

RESUMO

Demyelinating diseases of the nervous system cause axon loss but the underlying mechanisms are not well understood. Here we show by confocal and electron microscopy that in myelin-forming glia peroxisomes are associated with myelin membranes. When peroxisome biogenesis is experimentally perturbed in Pex5 conditional mouse mutants, myelination by Schwann cells appears initially normal. However, in nerves of older mice paranodal loops become physically unstable and develop swellings filled with vesicles and electron-dense material. This novel model of a demyelinating neuropathy demonstrates that peroxisomes serve an important function in the peripheral myelin compartment, required for long-term axonal integrity.


Assuntos
Axônios/ultraestrutura , Bainha de Mielina/metabolismo , Fibras Nervosas Mielinizadas/ultraestrutura , Peroxissomos/metabolismo , Animais , Axônios/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Nervosas Mielinizadas/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Nervo Isquiático/metabolismo , Nervo Isquiático/ultraestrutura
10.
Glia ; 58(13): 1532-43, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20578053

RESUMO

Ablation of functional peroxisomes from all neural cells in Nestin-Pex5 knockout mice caused remarkable neurological abnormalities including motoric and cognitive malfunctioning accompanied by demyelination, axonal degeneration, and gliosis. An oligodendrocyte selective Cnp-Pex5 knockout mouse model shows a similar pathology, but with later onset and slower progression. Until now, the link between these neurological anomalies and the known metabolic alterations, namely the accumulation of very long-chain fatty acids (VLCFA) and reduction of plasmalogens, has not been established. We now focused on the role of peroxisomes in neurons and astrocytes. A neuron-specific peroxisome knockout model, NEX-Pex5, showed neither microscopic nor metabolic abnormalities indicating that the lack of functional peroxisomes within neurons does not cause axonal damage. Axonal integrity and normal behavior was also preserved when peroxisomes were deleted from astrocytes in GFAP-Pex5(-/-) mice. Nevertheless, peroxisomal metabolites were dysregulated in brain including a marked accumulation of VLCFA and a slight reduction in plasmalogens. Interestingly, despite minor targeting of oligodendrocytes in GFAP-Pex5(-/-) mice, these metabolic perturbations were also present in isolated myelin indicating that peroxisomal metabolites are shuttled between different brain cell types. We conclude that absence of peroxisomal metabolism in neurons and astrocytes does not provoke the neurodegenerative phenotype observed after deleting peroxisomes from oligodendrocytes. Lack of peroxisomal metabolism in astrocytes causes increased VLCFA levels in myelin, but this has no major impact on neurological functioning.


Assuntos
Astrócitos/citologia , Axônios/fisiologia , Neurônios/citologia , Peroxissomos/metabolismo , Regulação para Cima/genética , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Comportamento Animal/fisiologia , Células Cultivadas , Cerebelo/citologia , Embrião de Mamíferos , Proteína Glial Fibrilar Ácida/genética , Proteínas de Filamentos Intermediários/metabolismo , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Transgênicos , Atividade Motora/genética , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Receptor 1 de Sinal de Orientação para Peroxissomos , Peroxissomos/genética , Receptores Citoplasmáticos e Nucleares/deficiência , Teste de Desempenho do Rota-Rod/métodos
11.
Curr Opin Neurol ; 21(3): 235-41, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18451704

RESUMO

PURPOSE OF REVIEW: Although multiple sclerosis is considered the prototype of a primary autoimmune disease in the central nervous system, there is emerging evidence that primary oligodendrocyte dysfunctions can suffice to trigger a secondary immune response in the nervous system. This short review focuses on the possible primary role of oligodendrocytes in axon loss and inflammatory demyelination. RECENT FINDINGS: The analysis of natural and engineered mouse mutants has provided unexpected insight into oligodendrocyte function beyond that of axonal myelination for rapid impulse propagation. Specifically, mutations in some genes thought to be required for myelin assembly revealed an additional role of oligodendrocytes in supporting long-term axonal function and survival. Other mutations have been reported that cause both central nervous system demyelination and neuroinflammation, with pathological features known from human leukodystrophy patients. In human multiple sclerosis, demyelination leads invariably to axon loss, but the underling pathomechanisms may not be restricted to that of a primary immune-mediated disorder. SUMMARY: Collectively, experimental and pathological findings point to a primary role of myelinating glia in long-term axonal support and suggest that defects of lipid metabolism in oligodendrocytes contribute to inflammatory myelin diseases.


Assuntos
Axônios/imunologia , Doenças Desmielinizantes/imunologia , Fibras Nervosas Mielinizadas/imunologia , Oligodendroglia/imunologia , Peroxissomos/fisiologia , Animais , Axônios/fisiologia , Sobrevivência Celular/imunologia , Eicosanoides/imunologia , Humanos , Camundongos , Camundongos Mutantes Neurológicos , Bainha de Mielina/imunologia , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia
12.
Nat Genet ; 39(8): 969-76, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17643102

RESUMO

Oligodendrocytes myelinate axons for rapid impulse conduction and contribute to normal axonal functions in the central nervous system. In multiple sclerosis, demyelination is caused by autoimmune attacks, but the role of oligodendroglial cells in disease progression and axon degeneration is unclear. Here we show that oligodendrocytes harbor peroxisomes whose function is essential for maintaining white matter tracts throughout adult life. By selectively inactivating the import factor PEX5 in myelinating glia, we generated mutant mice that developed normally, but within several months showed ataxia, tremor and premature death. Absence of functional peroxisomes from oligodendrocytes caused widespread axonal degeneration and progressive subcortical demyelination, but did not interfere with glial survival. Moreover, it caused a strong proinflammatory milieu and, unexpectedly, the infiltration of B and activated CD8+ T cells into brain lesions. We conclude that peroxisomes provide oligodendrocytes with an essential neuroprotective function against axon degeneration and neuroinflammation, which is relevant for human demyelinating diseases.


Assuntos
Axônios/fisiologia , Doenças Desmielinizantes/fisiopatologia , Oligodendroglia/fisiologia , Peroxissomos/fisiologia , Animais , Axônios/patologia , Linfócitos T CD8-Positivos/imunologia , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Humanos , Metabolismo dos Lipídeos , Camundongos , Fibras Nervosas Mielinizadas , Receptor 1 de Sinal de Orientação para Peroxissomos , Receptores Citoplasmáticos e Nucleares/fisiologia , Subpopulações de Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...