Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 239(4): 1281-1299, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37320971

RESUMO

Increasing drought phenomena pose a serious threat to agricultural productivity. Although plants have multiple ways to respond to the complexity of drought stress, the underlying mechanisms of stress sensing and signaling remain unclear. The role of the vasculature, in particular the phloem, in facilitating inter-organ communication is critical and poorly understood. Combining genetic, proteomic and physiological approaches, we investigated the role of AtMC3, a phloem-specific member of the metacaspase family, in osmotic stress responses in Arabidopsis thaliana. Analyses of the proteome in plants with altered AtMC3 levels revealed differential abundance of proteins related to osmotic stress pointing into a role of the protein in water-stress-related responses. Overexpression of AtMC3 conferred drought tolerance by enhancing the differentiation of specific vascular tissues and maintaining higher levels of vascular-mediated transportation, while plants lacking the protein showed an impaired response to drought and inability to respond effectively to the hormone abscisic acid. Overall, our data highlight the importance of AtMC3 and vascular plasticity in fine-tuning early drought responses at the whole plant level without affecting growth or yield.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistência à Seca , Floema/metabolismo , Proteômica , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Secas , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
2.
Front Cell Dev Biol ; 10: 903436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646919

RESUMO

Neuroinflammation is a critical and targetable pathogenic component of neurodegenerative diseases, including glaucoma, the leading cause of irreversible blindness. Valproic acid has previously been demonstrated to reduce neuroinflammation and is neuroprotective in a number of experimental settings. To determine whether valproic acid can limit retinal neuroinflammation and protect retinal neurons we used an ex vivo retina explant (axotomy) model to isolate resident glial responses from blood-derived monocytes. Neuroinflammatory status was defined using high resolution confocal imaging with 3D morphological reconstruction and cytokine protein arrays. Valproic acid significantly reduced microglia and astrocyte morphological changes, consistent with a reduction in pro-inflammatory phenotypes. Cytokine profiling demonstrated that valproic acid significantly attenuated or prevented expression of pro-inflammatory cytokines in injured retina. This identifies that the retinal explant model as a useful tool to explore resident neuroinflammation in a rapid timescale whilst maintaining a complex system of cell interactions and valproic acid as a useful drug to further explore anti-neuroinflammatory strategies in retinal disease.

3.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35723181

RESUMO

Over time, plants have evolved flexible self-organizing patterning mechanisms to adapt tissue functionality for continuous organ growth. An example of this process is the multicellular organization of cells into a vascular network in foliar organs. An important, yet poorly understood component of this process is secondary vein branching, a mechanism employed to extend vascular tissues throughout the cotyledon surface. Here, we uncover two distinct branching mechanisms during embryogenesis by analyzing the discontinuous vein network of the double mutant cotyledon vascular pattern 2 (cvp2) cvp2-like 1 (cvl1). Similar to wild-type embryos, distal veins in cvp2 cvl1 embryos arise from the bifurcation of cell files contained in the midvein, whereas proximal branching is absent in this mutant. Restoration of this process can be achieved by increasing OCTOPUS dosage as well as by silencing RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2) expression. Although RPK2-dependent rescue of cvp2 cvl1 is auxin- and CLE peptide-independent, distal branching involves polar auxin transport and follows a distinct regulatory mechanism. Our work defines a genetic network that confers plasticity to Arabidopsis embryos to spatially adapt vascular tissues to organ growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cotilédone/genética , Cotilédone/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Proteínas de Membrana/metabolismo
4.
Curr Biol ; 30(5): 755-766.e4, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32037095

RESUMO

Plant cells can change their identity based on positional information, a mechanism that confers developmental plasticity to plants. This ability, common to distinct multicellular organisms, is particularly relevant for plant phloem cells. Protophloem sieve elements (PSEs), one type of phloem conductive cells, act as the main organizers of the phloem pole, which comprises four distinct cell files organized in a conserved pattern. Here, we report how Arabidopsis roots generate a reservoir of meristematic phloem cells competent to swap their cell identities. Although PSE misspecification induces cell identity hybridism, the activity of RECEPTOR LIKE PROTEIN KINASE 2 (RPK2) by perceiving CLE45 peptide contributes to restrict PSE identity to the PSE position. By maintaining a spatiotemporal window when PSE and PSE-adjacent cells' identities are interchangeable, CLE45 signaling endows phloem cells with the competence to re-pattern a functional phloem pole when protophloem fails to form.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Floema/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Floema/metabolismo , Raízes de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
5.
Development ; 144(19): 3578-3589, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28851711

RESUMO

The plant vascular network consists of specialized phloem and xylem elements that undergo two distinct morphogenetic developmental programs to become transport-functional units. Whereas vacuolar rupture is a determinant step in protoxylem differentiation, protophloem elements never form a big central vacuole. Here, we show that a genetic disturbance of phosphatidylinositol 4,5-bis-phosphate [PtdIns(4,5)P2] homeostasis rewires cell trafficking towards the vacuole in Arabidopsis thaliana roots. Consequently, an enhanced phosphoinositide-mediated vacuolar biogenesis correlates with premature programmed cell death (PCD) and secondary cell wall elaboration in xylem cells. By contrast, vacuolar fusion events in protophloem cells trigger the abnormal formation of big vacuoles, preventing cell clearance and tissue functionality. Removal of the inositol 5' phosphatase COTYLEDON VASCULAR PATTERN 2 from the plasma membrane (PM) by brefeldin A (BFA) treatment increases PtdIns(4,5)P2 content at the PM and disrupts protophloem continuity. Conversely, BFA application abolishes vacuolar fusion events in xylem tissue without preventing PCD, suggesting the existence of additional PtdIns(4,5)P2-dependent cell death mechanisms. Overall, our data indicate that tight PM phosphoinositide homeostasis is required to modulate intracellular trafficking contributing to oppositely regulate vascular differentiation.


Assuntos
Arabidopsis/citologia , Diferenciação Celular , Homeostase , Fosfatidilinositóis/metabolismo , Raízes de Plantas/citologia , Feixe Vascular de Plantas/citologia , Apoptose/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Estradiol/farmacologia , Homeostase/efeitos dos fármacos , Espaço Intracelular/metabolismo , Floema/citologia , Floema/efeitos dos fármacos , Floema/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Xilema/citologia , Xilema/efeitos dos fármacos , Xilema/metabolismo
6.
PLoS One ; 10(3): e0121325, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826211

RESUMO

Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont's and photobiont's consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont's hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications.


Assuntos
Hidrogênio/metabolismo , Líquens/fisiologia , Simbiose , Meios de Cultura , Escuridão , Transporte de Elétrons , Glucose/metabolismo , Líquens/metabolismo , Luz , Fotossíntese , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...