Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1235866, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600018

RESUMO

Although volatile organic solvents such as toluene are used for commercial and industrial uses, they are often voluntarily inhaled for their intoxicating and euphoric effects. Research into the effects of inhalants such as toluene on brain function have revealed actions on a variety of ligand-gated and voltage-activated ion channels involved in regulating neuronal excitability. Previous work from this laboratory has also shown that brief exposures to toluene vapor induce changes in the intrinsic excitability and synaptic transmission of neurons within the medial prefrontal cortex and ventral tegmental area that vary depending on projection target. In the present study, we recorded current-evoked spiking of medium spiny neurons (MSNs) in the nucleus accumbens (NAc) core and shell in adolescent rats exposed to an intoxicating concentration of toluene vapor. Compared to air controls, firing of NAc core MSNs in Sprague-Dawley rats was not altered 24 h after exposure to 10,500 ppm toluene vapor while spiking of NAc shell MSNs was enhanced at low current steps but reduced at higher current steps. When the rheobase current was used to putatively identify MSN subtypes, both "D1-like" and "D2-like" MSNs within the NAc shell but not core showed toluene-induced changes in firing. As toluene may itself have altered the rheobase resulting in misclassification of neuron subtype, we conducted additional studies using adolescent D2-Cre rats infused with a Cre-dependent mCherry reporter virus. Following toluene vapor exposure, spiking of NAc shell D2+ MSNs was enhanced at low current steps but inhibited at higher currents as compared to air controls while there were no differences in the firing of NAc shell D2- MSNs. The toluene-induced change in NAc D2+ shell MSN firing was accompanied by alterations in membrane resistance, rheobase, action potential rise time and height with no changes noted in D2- MSNs. Overall, these data add to a growing literature showing that brief exposures to intoxicating concentrations of toluene vapor causes selective alterations in the excitability of neurons within the addiction neurocircuitry that vary depending on sub-region, cell-type and projection target.

2.
Front Behav Neurosci ; 17: 1223883, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37589035

RESUMO

Binge-like ethanol exposure during adolescence has been shown to produce long lasting effects in animal models including anxiety-like behavior that can last into young adulthood and impairments in cognition that can last throughout most of the lifespan. However, little research has investigated if binge-like ethanol exposure during adolescence produces persistent anxiety-like behavior and concomitantly impairs cognition late in life. Furthermore, few studies have investigated such behavioral effects in both female and male rats over the lifespan. Finally, it is yet to be determined if binge-like ethanol exposure during adolescence alters microglia activation in relevant brain regions late in life. In the present study female and male adolescent rats were exposed to either 3.0 or 5.0 g/kg ethanol, or water control, in a chronic intermittent pattern before being tested in the elevated plus maze and open field task over the next ∼18 months. Animals were then trained in a spatial reference task via the Morris water maze before having their behavioral flexibility tested. Finally, brains were removed, sectioned and presumptive microglia activation determined using autoradiography for [3H]PK11195 binding. Males, but not females, displayed an anxiety-like phenotype initially following the chronic intermittent ethanol exposure paradigm which resolved in adulthood. Further, males but not females had altered spatial reference learning and impaired behavioral flexibility late in life. Conversely, [3H]PK11195 binding was significantly elevated in females compared to males late in life and the level of microglia activation interacted as a function of sex and brain regions, but there was no long-term outcome related to adolescent alcohol exposure. These data further confirm that binge-like ethanol exposure during adolescence produces alterations in behavior that can last throughout the lifespan. In addition, the data suggest that microglia activation late in life is not exacerbated by prior binge-like ethanol exposure during adolescence but the expression is sex- and brain region-dependent across the lifespan.

3.
Brain Sci ; 12(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35624993

RESUMO

Chronic intermittent ethanol exposure during adolescence produces behavioral impairments and neurobiological changes that can last into young adulthood. One such behavioral impairment is reduced behavioral flexibility, a behavioral impairment that has been correlated with the risk for increased ethanol intake. In the current study, we investigated if chronic intermittent ethanol exposure during adolescence alters cognition, including behavioral flexibility, over a 22-month testing period. Female and male rats were treated with either 3.0 g/kg or 5.0 g/kg ethanol via gavage in a chronic intermittent fashion during adolescence and then tested every 4 to 5 months on a series of cognitive measures in the Morris water maze. Chronic intermittent ethanol selectively impaired behavioral flexibility in both female and male rats, although the pattern of results was different as a function of sex. In addition, female, but not male, rats were impaired in a short-term relearning test. Finally, male rats administered ethanol during adolescence were significantly more likely to not survive the 22-month experiment compared to female rats administered ethanol during adolescence. The current results demonstrate that adolescence is a unique period of development where chronic intermittent ethanol exposure produces long-lasting, selective cognitive impairments across the lifespan.

4.
Addict Biol ; 27(1): e13060, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34013595

RESUMO

The epigenetic enzyme G9a is a histone methyltransferase that dimethylates lysine 9 on histone H3 (H3K9me2), and in the adult nucleus accumbens (NAc), G9a regulates multiple behaviors associated with substance use disorder. We show here that chronic intermittent ethanol (CIE) exposure in male mice reduced both G9a and H3K9me2 levels in the adult NAc, but not dorsal striatum. Viral-mediated reduction of G9a in the NAc had no effects on baseline volitional ethanol drinking or escalated alcohol drinking produced by CIE exposure; however, NAc G9a was required for stress-regulated changes in ethanol drinking, including potentiated alcohol drinking produced by activation of the kappa-opioid receptor. In addition, we observed that chronic systemic administration of a G9a inhibitor, UNC0642, also blocked stress-potentiated alcohol drinking. Together, our findings suggest that chronic alcohol use, similar to other abused substances, produces a NAc-selective reduction in G9a levels that serves to limit stress-regulated alcohol drinking. Moreover, our findings suggest that pharmacological inhibition of G9a might provide a novel therapeutic approach to treat stress-induced alcohol drinking, which is a major trigger of relapse in individuals suffering from AUD.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Histona Metiltransferases/metabolismo , Quinazolinas/metabolismo , Estresse Psicológico/metabolismo , Animais , Epigênese Genética , Etanol , Histonas/metabolismo , Masculino , Camundongos , Núcleo Accumbens/metabolismo
5.
Int Rev Neurobiol ; 148: 79-99, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31733668

RESUMO

The population of most countries is increasing and the United Nations predicts that by the year 2050 those over the age of 60 years old will increase from 900 million individuals to approximately 2.1 billion individuals (United Nations, 2015). The increase in the number of older individuals will place a strain on many national health care systems making it important to investigate behaviors in the aged that may negatively impact general health in this demographic. Recent work has shown that older adults consume alcohol, often at levels that exceed the legal limit of intoxication. Unfortunately, consumption of high levels of ethanol in the older population is associated with many health consequences and may negatively impact the brain. Given ethical constraints found in many biomedical studies, animal models are needed to investigate the possible negative impact of high ethanol use in aged populations. However, few studies have investigated the effect of ethanol exposure in aged animals compared to ethanol exposure in younger animals and consequently the impact of ethanol in the aged population is not well understood. The current review summarizes initial work establishing the impact of ethanol in aged animals. The reviewed research studies support the working hypothesis that ethanol exposure produces significantly greater effects in aged animals compared to younger animals on many, if not all, behavioral tasks. In addition, the review proposes several initial, promising avenues of research to explore the neurobiological mechanisms that underly greater effects on ethanol-induced ataxia, cognition and sleep time. It is hoped that this effort will not only lead to a better understanding of behaviors impacted by ethanol in aged animals, but also improve the understanding brain mechanisms of the reported increased sensitivity to ethanol in the aged population.


Assuntos
Envelhecimento/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Etanol/farmacologia , Animais
6.
Alcohol ; 78: 33-42, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30472308

RESUMO

The average age of the population in the United States and other countries is increasing. Understanding the health consequences in the aged population is critical. Elderly individuals consume ethanol, often at elevated rates, and in some cases in a binge episode. The present study sought to investigate whether binge-like ethanol exposure in aged male rats produced differential health and behavioral effects compared to adult male and adolescent male rats. Subjects were exposed to either 1.0 g/kg or 2.0 g/kg ethanol every other day via intraperitoneal injection for 20 days, and tested on a variety of behavioral measures and body weight. Binge-like ethanol exposure produced differential effects on body weight between aged and adolescent and adult rats. In addition, aged rats had a significantly longer loss of righting reflex and demonstrated a trend toward tolerance following the 2.0-g/kg exposure. No significant effects on anxiety-like behavior as measured by open arm entries, depressive-like symptoms as measured by immobility in the forced swim test, or cognitive performance as measured by latency and path length in the Morris water maze were found. These results demonstrate that aged animals are differentially sensitive to the impact of chronic intermittent ethanol exposure in some, but not all behaviors. Future research is needed to understand the mechanisms of these differential effects.


Assuntos
Fatores Etários , Escala de Avaliação Comportamental , Etanol/farmacologia , Animais , Ansiedade , Concentração Alcoólica no Sangue , Peso Corporal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Sinais (Psicologia) , Depressão , Determinação de Ponto Final , Injeções Intraperitoneais , Masculino , Modelos Animais , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Reflexo de Endireitamento/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Wisconsin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...