Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Ecol ; 59(2): 265-73, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17313577

RESUMO

The seasonal and diel dynamics of the physiological state and photosynthetic activity of the snow alga Chlamydomonas nivalis were investigated in a snowfield in Svalbard. The snow surface represents an environment with very high irradiation intensities along with stable low temperatures close to freezing point. Photosynthetic activity was measured using pulse amplitude modulation fluorometry. Three types of cell (green biflagellate vegetative cells, orange spores clustered by means of mucilaginous sheaths, and purple spores with thick cell walls) were found, all of them photosynthetically active. The pH of snow ranged between 5.0 and 7.5, and the conductivity ranged between 5 and 75 microS cm(-1). The temperature of snow was stable (-0.1 to +0.1 degrees C), and the incident radiation values ranged from 11 to 1500 micromol photons m(-2) s(-1). The photosynthetic activity had seasonal and diel dynamics. The Fv/Fm values ranged between 0.4 and 0.7, and generally declined over the course of the season. A dynamic response of Fv/Fm to the irradiance was recorded. According to the saturating photon fluence values Ek, the algae may have obtained saturating light as deep as 3 cm in the snow when there were higher-light conditions, whereas they were undersaturated at prevalent low light even if on the surface.


Assuntos
Chlamydomonas/fisiologia , Fotossíntese/fisiologia , Estações do Ano , Neve/microbiologia , Animais , Regiões Árticas , Chlamydomonas/isolamento & purificação , Escuridão , Fluorometria/métodos , Luz , Neve/química
2.
Microb Ecol ; 52(4): 644-54, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17072679

RESUMO

Microbial communities occurring in three types of supraglacial habitats--cryoconite holes, medial moraines, and supraglacial kames--at several glaciers in the Arctic archipelago of Svalbard were investigated. Abundance, biovolume, and community structure were evaluated by using epifluorescence microscopy and culturing methods. Particular emphasis was laid on distinctions in the chemical and physical properties of the supraglacial habitats and their relation to the microbial communities, and quantitative multivariate analyses were used to assess potential relationships. Varying pH (4.8 in cryoconite; 8.5 in a moraine) and texture (the proportion of coarse fraction 2% of dry weight in cryoconite; 99% dw in a kame) were found, and rather low concentrations of organic matter (0.3% of dry weight in a kame; 22% dw in cryoconite) and nutrients (nitrogen up to 0.4% dw, phosphorus up to 0.8% dw) were determined in the samples. In cryoconite sediment, the highest numbers of bacteria, cyanobacteria, and algae were found, whereas relatively low microbial abundances were recorded in moraines and kames. Cyanobacterial cells were significantly more abundant than microalgal ones in cryoconite and supraglacial kames. Different species of the cyanobacterial genus Leptolyngbya were by far the most represented in all samples, and cyanobacteria of the genera Phormidium and Nostoc prevailed in cultures isolated from cryoconite samples. These species are considered opportunistic organisms with wide ecological valency and strong colonizing potential rather than glacial specialists. Statistical analyses suggest that fine sediment with higher water content is the most suitable condition for bacteria, cyanobacteria, and algae. Also, a positive impact of lower pH on microbial growth was found. The fate of a microbial cell deposited on the glacier surface seems therefore predetermined by the physical and chemical factors such as texture of sediment and water content rather than spatial factors or the origin of sediment.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Eucariotos/crescimento & desenvolvimento , Camada de Gelo/microbiologia , Ecossistema , Microbiologia Ambiental , Geografia , Sedimentos Geológicos/microbiologia , Svalbard
3.
Environ Toxicol ; 21(3): 236-43, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16646018

RESUMO

In mid-July and August 2003 and 2004, 18 reservoirs in the Czech Republic were sampled for phytoplankton species composition and concentration of intracellular microcystins (MCs). As a consequence of high nutrient loading, most of the reservoirs experienced cyanobacterial blooms of various intensities, with the prevalence of cyanobacteria increasing markedly in August, along with a conspicuous shift in species composition toward dominance of Microcystis spp. Microcystins were detected in 90% of the samples, and their amount also increased considerably in August, reflecting the cyanobacterial biomass. In Microcystis-dominated samples, a significantly higher amount of MCs (p < 0.001) occurred than in samples in which other taxa prevailed. Microcystins were positively correlated with chlorophyll a and cyanobacterial biovolume (p < 0.05, R2 = 0.61 and 0.66, respectively), with the strongest correlation found for Microcystis spp. biovolume (p < 0.001, R2 = 0.87). This taxon was the most important producer of MCs in Czech reservoirs. The main structural variants of MCs were MC-LR, MC-RR, and MC-YR. This study's data also indicate that the relative share of MC variants (MC-LR and MC-RR) varies considerably with time, most likely as a consequence of different species and strain compositions during the summer. This study clearly demonstrates a high prevalence of MC-producing cyanobacteria in Czech reservoirs. Therefore, regular monitoring of these reservoirs is highly desirable in an effort to minimize potential health risks to the human population.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Monitoramento Ambiental , Eutrofização , Água Doce/microbiologia , Peptídeos Cíclicos/metabolismo , Microbiologia da Água , Biomassa , República Tcheca , Água Doce/química , Microcistinas , Dinâmica Populacional , Estações do Ano , Abastecimento de Água
4.
Microb Ecol ; 50(3): 396-407, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16328651

RESUMO

Microbial community composition (cyanobacteria and eukaryotic microalgae abundance and diversity, bacterial abundance, and soil respiration) was studied in subglacial and periglacial habitats on five glaciers near Ny-Alesund, Svalbard (79 degrees N). Soil microbial communities from nonvegetated sites (subglacial, recently deglaciated, and cryoconite sediments) and sites with plant cover (deglaciated some hundreds of years ago) were analyzed. Physicochemical analyses (pH, texture, water content, organic matter, total C and N content) were also performed on the samples. In total, 57 taxa of 23 genera of cyanobacteriaand algae were identified. Algae from the class Chlorophyceae (25 species) and cyanobacteria (23 species) were richest in biodiversity. The numbers of identified species in single habitat types were 23 in subglacial, 39 inbarren, 22 in cryoconite, and 24 in vegetated soils. The highest cyanobacterial and algal biovolume and cell numbers, respectively, were present in cryoconite (13x10(4) microm3 mg-1 soil and 508 cells per mg of soil), followed by barren (5.7x10(4) and 188), vegetated (2.6x10(4) and 120), and subglacial (0.1x10(4) and 5) soils. Cyanobacteria prevailed in all soil samples. Algae (mainly green algae) were present only as accessory organisms. The density of bacteria showed a slightly different trend to that of the cyanobacterial and algal assemblages. The highest number of bacteria was present in vegetated (mean: 13,722x10(8) cells per mg of soil dry wt.), followed by cryoconite (3802x10(8)), barren (654x10(8)), and subglacial (78x10(8)) soils. Response of cyanobacteria and algae to physical parameters showed that soil texture and water content are important for biomass development. In addition, it is shown that nitrogen and water content are the main factors affecting bacterial abundance and overall soil respiration. Redundancy analysis (RDA) with forward selection was used to create a model explaining variability in cyanobacterial, algal, and bacterial abundance. Cryoconites accounted for most of the variation in cyanobacteria and algae biovolume, followed by barren soils. Oscillatoriales, desmids, and green coccoid algae preferred cryoconites, whereas Nostocales and Chroococcales occurred mostly in barren soils. From the data obtained, it is evident that of the studied habitats cryoconite sediments are the most suitable ones for the development of microbial assemblages. Although subglacial sediments do not provide as good conditions as cryoconites, they support the survival of microbial communities. Both mentioned habitats are potential sources for the microbial recolonization of freshly deglaciated soil after the glacier retreat.


Assuntos
Cianobactérias/isolamento & purificação , Eucariotos/isolamento & purificação , Microbiologia do Solo , Regiões Árticas , Clorófitas/isolamento & purificação , Contagem de Colônia Microbiana , Cianobactérias/classificação , Ecossistema , Eucariotos/classificação , Gelo , Solo/análise
5.
Int J Syst Evol Microbiol ; 55(Pt 1): 11-26, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15653847

RESUMO

The heterocytous cyanobacteria form a monophyletic group according to 16S rRNA gene sequence data. Within this group, phylogenetic and morphological studies have shown that genera such as Anabaena and Aphanizomenon are intermixed. Moreover, the phylogeny of the genus Trichormus, which was recently separated from Anabaena, has not been investigated. The aim was to study the taxonomy of the genera Anabaena, Aphanizomenon, Nostoc and Trichormus belonging to the family Nostocaceae (subsection IV.I) by morphological and phylogenetic analyses of 16S rRNA gene, rpoB and rbcLX sequences. New strains were isolated to avoid identification problems caused by morphological changes of strains during cultivation. Morphological and phylogenetic data showed that benthic and planktic Anabaena strains were intermixed. In addition, the present study confirmed that Anabaena and Aphanizomenon strains were not monophyletic, as previously demonstrated. The evolutionary distances between the strains indicated that the planktic Anabaena and Aphanizomenon strains as well as five benthic Anabaena strains in cluster 1 could be assigned to a single genus. On the basis of the 16S rRNA, rpoB and rbcLX gene sequences, the Anabaena/Aphanizomenon strains (cluster 1) were divided into nine supported subclusters which could also be separated morphologically, and which therefore might represent different species. Trichormus strains were morphologically and phylogenetically heterogeneous and did not form a monophyletic cluster. These Trichormus strains, which were representatives of three distinct species, might actually belong to three genera according to the evolutionary distances. Nostoc strains were also heterogeneous and seemed to form a monophyletic cluster, which may contain more than one genus. It was found that certain morphological features were stable and could be used to separate different phylogenetic clusters. For example, the width and the length of akinetes were useful features for classification of the Anabaena/Aphanizomenon strains in cluster 1. This morphological and phylogenetic study with fresh isolates showed that the current classification of these anabaenoid genera needs to be revised.


Assuntos
Cianobactérias/classificação , Cianobactérias/ultraestrutura , Filogenia , Anabaena/genética , Anabaena/ultraestrutura , Aphanizomenon/genética , Aphanizomenon/ultraestrutura , Técnicas de Tipagem Bacteriana , Cianobactérias/genética , DNA Bacteriano/análise , DNA Ribossômico/análise , RNA Polimerases Dirigidas por DNA/genética , Dados de Sequência Molecular , Nostoc/genética , Nostoc/ultraestrutura , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...