Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 19799, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509803

RESUMO

High-spatial resolution observation of high-wavenumber broadband turbulence is achieved by controlling the magnetic field to be relatively low and measuring with a azimuthally arranged multi-channel Langmuir array in a basic laboratory plasma. The observed turbulence consists of narrowband low-frequency fluctuations and broadband high-frequency turbulent fluctuations. The low-frequency fluctuations have a frequency of about 0.7 times the ion cyclotron frequency and a spatial scale of 1/10 of the ion inertial scale. In comparison, high-frequency fluctuations have a higher frequency than the ion cyclotron frequency and spatial scales of 1/10-1/40 of the ion inertial scale. Two-dimensional correlation analysis evaluates the spatial and temporal correlation lengths and reveals that the high-wavenumber broadband fluctuations have turbulent characteristics. The measurements give us further understanding of small scale turbulence in space and fusion plasmas.

2.
Sci Rep ; 11(1): 3720, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608562

RESUMO

A tomography system is installed as one of the diagnostics of new age to examine the three-dimensional characteristics of structure and dynamics including fluctuations of a linear magnetized helicon plasma. The system is composed of three sets of tomography components located at different axial positions. Each tomography component can measure the two-dimensional emission profile over the entire cross-section of plasma at different axial positions in a sufficient temporal scale to detect the fluctuations. The four-dimensional measurement including time and space successfully obtains the following three results that have never been found without three-dimensional measurement: (1) in the production phase, the plasma front propagates from the antenna toward the end plate with an ion acoustic velocity. (2) In the steady state, the plasma emission profile is inhomogeneous, and decreases along the axial direction in the presence of the azimuthal asymmetry. Furthermore, (3) in the steady state, the fluctuations should originate from a particular axial position located downward from the helicon antenna.

3.
Phys Rev Lett ; 94(19): 195002, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-16090180

RESUMO

Two-dimensional structures of the electrostatic potential, density, and flow velocity near the edge of a tokamak plasma are investigated. The model includes the nonlinearity in bulk-ion viscosity and turbulence-driven shear viscosity. For the case with the strong radial electric field (H mode), a two-dimensional structure in a transport barrier is obtained, giving a poloidal shock with a solitary radial electric field profile. The inward particle pinch is induced from this poloidal asymmetric electric field, and increases as the radial electric field becomes stronger. The abrupt increase of this inward ion and electron flux at the onset of L- to H-mode transition explains the rapid establishment of the density pedestal, which is responsible for the observed spontaneous self-reorganization into an improved confinement regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...