Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 745: 109718, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37579931

RESUMO

Current progress in biology and medical science is based on the observation at the level of nanometers via electron microscopy and computation. Of note, the size of most cells in higher species exists in a limited range from 5 to 50 µm. Recently, it was demonstrated that endogenous extracellular nanoparticles play a role in communication among various cellular types in a variety of contexts. Among them, exosomes in serum have been established as biomarkers for human diseases by analyzing the cargo molecules. No life on the earth can survive without iron. However, excess iron can be a risk for carcinogenesis in rodents and humans. Nano-sized molecules may cause unexpected bioeffects, including carcinogenesis, which is a process to establish cellular iron addiction with ferroptosis-resistance. Asbestos and carbon nanotubes are the typical examples, leading to carcinogenesis by the alteration of iron metabolism. Recently, we found that CD63, one of the representative markers of exosomes, is under the regulation of iron-responsive element/iron-regulatory protein system. This is a safe strategy to share excess iron in the form of holo-ferritin between iron-sufficient and -deficient cells. On the other hand, damaged cells may secrete holo-ferritin-loaded exosomes as in the case of macrophages in ferroptosis after asbestos exposure. These holo-ferritin-loaded exosomes can cause mutagenic DNA damage in the recipient mesothelial cells. Thus, there is an iron link between exogenous and endogenous nanoparticles, which requires further investigation for better understanding and the future applications.


Assuntos
Amianto , Sobrecarga de Ferro , Nanopartículas , Nanotubos de Carbono , Humanos , Ferro/metabolismo , Ferritinas , Amianto/metabolismo , Carcinogênese
2.
Antioxid Redox Signal ; 39(10-12): 807-815, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36401504

RESUMO

Significance: Iron is an essential element for every life on earth as a primary media for electron flow. Sulfur compounds as sulfhydryls counteract catalytic activity of iron whereas sulfur overdose is also toxic. In aerobic organisms, oxygen is the major media for electron transfer with higher intracellular mobility, which cooperates with the iron system. Based on the importance of iron, there is no active pathway to excrete iron outside the body in higher species. Whereas bacterial infection causes a scramble for iron in situ, cancer can be the outcome of the side effects of long use of iron and oxygen. Recent Advances: Ferroptosis is a recently coined cell death, defined as catalytic Fe(II)-dependent regulated necrosis accompanied by lipid peroxidation. Researchers recently recognized that ferroptosis is involved in a variety of physiological and pathological contexts, including embryonic erythropoiesis, aging, neurodegeneration and cancer cell death. Alternatively, carcinogenesis is a process to obtain iron addiction with ferroptosis-resistance, based on rodent animal studies. Critical Issues: Here we propose that ferroptosis is three-dimensionally regulated by iron, sulfur and oxygen, which correspond to oxidants, antioxidants and membrane fluidity with susceptibility to lipid peroxidation, respectively. Future Directions: Whereas life attempts to prevent ferroptosis, ferroptotic cells eventually emit iron-loaded ferritin as extracellular vesicles to maintain monopoly of iron. Antioxid. Redox Signal. 39, 807-815.

3.
J Cancer Prev ; 26(4): 244-249, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35047450

RESUMO

Human epidemiological and animal studies have demonstrated that excess iron is a risk for cancer. The responsible mechanisms are: 1) increased intracellular iron catalyzes the Fenton reaction to generate hydroxyl radicals, leading to mutagenic oxidative DNA lesions; 2) iron is necessary for cellular proliferation as cofactors of many enzymes. Thus, iron-excess milieu promotes selecting cellular evolution to ferroptosis-resistance, a major basis for carcinogenesis. Ferritin is a 24-subunit nanocage protein required for iron storage under the regulation of the iron-regulatory protein (IRP)/iron-responsive element (IRE) system. Ferritin is a serum marker, representing total body iron storage. However, how ferritin is secreted extracellularly has been unelucidated. We recently discovered that an exosomal marker CD63 is regulated by the IRP/IRE system and that iron-loaded ferritin is secreted as extracellular vesicles under the guidance of nuclear receptor coactivator 4 (NCOA4). On the other hand, we found that macrophages under asbestos-induced ferroptosis emit ferroptosis-dependent extracellular vesicles (FedEVs), which are received by nearby mesothelial cells, resulting in significant mutagenic DNA damage. Therefore, cells, including macrophages, can share excess iron with other cells, via iron-loaded ferritin packaged in extracellular vesicles as safe non-catalytic iron. However, similar process, such as one involving FedEVs, may cause accumulation of excess iron in other specific cells, which may eventually promote carcinogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...