Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(8)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38479018

RESUMO

Objective.To investigate the reliability and accuracy of the manual three-point co-registration in neuronavigated transcranial magnetic stimulation (TMS). The effect of the error in landmark pointing on the coil placement and on the induced electric and magnetic fields was examined.Approach.The position of the TMS coil on the head was recorded by the neuronavigation system and by 3D scanning for ten healthy participants. The differences in the coil locations and orientations and the theoretical error values for electric and magnetic fields between the neuronavigated and 3D scanned coil positions were calculated. In addition, the sensitivity of the coil location on landmark accuracy was calculated.Main results.The measured distances between the neuronavigated and 3D scanned coil locations were on average 10.2 mm, ranging from 3.1 to 18.7 mm. The error in angles were on average from two to three degrees. The coil misplacement caused on average a 29% relative error in the electric field with a range from 9% to 51%. In the magnetic field, the same error was on average 33%, ranging from 10% to 58%. The misplacement of landmark points could cause a 1.8-fold error for the coil location.Significance.TMS neuronavigation with three landmark points can cause a significant error in the coil position, hampering research using highly accurate electric field calculations. Including 3D scanning to the process provides an efficient method to achieve a more accurate coil position.


Assuntos
Campos Magnéticos , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Reprodutibilidade dos Testes , Eletricidade , Voluntários Saudáveis
2.
Phys Med Biol ; 69(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37816371

RESUMO

Objective.To investigate whether the motor threshold (MT) and the location of the motor hotspot in transcranial magnetic stimulation (TMS) can be predicted with computational models of the induced electric field.Approach.Individualized computational models were constructed from structural magnetic resonance images of ten healthy participants, and the induced electric fields were determined with the finite element method. The models were used to optimize the location and direction of the TMS coil on the scalp to produce the largest electric field at a predetermined cortical target location. The models were also used to predict how the MT changes as the magnetic coil is moved to various locations over the scalp. To validate the model predictions, the motor evoked potentials were measured from the first dorsal interosseous (FDI) muscle with TMS in the ten participants. Both computational and experimental methods were preregistered prior to the experiments.Main results.Computationally optimized hotspot locations were nearly as accurate as those obtained using manual hotspot search procedures. The mean Euclidean distance between the predicted and the measured hotspot locations was approximately 1.3 cm with a 0.8 cm bias towards the anterior direction. Exploratory analyses showed that the bias could be removed by changing the cortical target location that was used for the prediction. The results also indicated a statistically significant relationship (p< 0.001) between the calculated electric field and the MT measured at several locations on the scalp.Significance.The results show that the individual TMS hotspot can be located using computational analysis without stimulating the subject or patient even once. Adapting computational modelling would save time and effort in research and clinical use of TMS.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Couro Cabeludo , Simulação por Computador , Potencial Evocado Motor/fisiologia , Estimulação Elétrica
3.
J Neural Eng ; 18(4)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34475274

RESUMO

Objective.Transcranial magnetic stimulation (TMS) can be used to safely and noninvasively activate brain tissue. However, the characteristic parameters of the neuronal activation have been largely unclear. In this work, we propose a novel neuronal activation model and develop a method to infer its parameters from measured motor evoked potential signals.Approach.The connection between neuronal activation due to an induced electric field and a measured motor threshold is modeled. The posterior distribution of the model parameters are inferred from measurement data using Bayes' formula. The measurements are the active motor thresholds obtained with multiple stimulating coil locations, and the parameters of the model are the location, preferred direction of activation, and threshold electric field value of the activation site. The posterior distribution is sampled using a Markov chain Monte Carlo method. We quantify the plausibility of the model by calculating the marginal likelihood of the measured thresholds. The method is validated with synthetic data and applied to motor threshold measurements from the first dorsal interosseus muscle in five healthy participants.Main results.The method produces a probability distribution for the activation location, from which a minimal volume where the activation occurs with 95% probability can be derived. For eight or nine stimulating coil locations, the smallest such a volume obtained was approximately 100 mm3. The 95% probability volume intersected the pre-central gyral crown and the anterior wall of the central sulcus, and the preferred direction was perpendicular to the central sulcus, both findings being consistent with the literature. Furthermore, it was not possible to rule out if the activation occurred either in the white or grey matter. In one participant, two distinct activations sites were found while others exhibited a unique site.Significance.The method is both generic and robust, and it lays a foundation for a framework that enables accurate analysis and characterization of TMS activation mechanisms.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Teorema de Bayes , Mapeamento Encefálico , Potencial Evocado Motor , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...