Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980009

RESUMO

The effect of polyphosphate (polyP) adsorption on the colloidal properties of disc-shaped laponite (LRD) particles was examined in aqueous dispersions with a focus on elucidating the interparticle forces that govern the colloidal stability of the systems. The charge and aggregation rate data of bare LRD exhibited an ionic strength-dependent trend, confirming the presence of double-layer repulsion and van der Waals attraction as major surface interactions. The charge of LRD particles significantly increased in magnitude at elevated polyP concentrations as a result of polyP adsorption and subsequent overcharging of the positively charged sites on the edges of the LRD discs. A transition from stable to unstable LRD colloids was observed with increasing polyP doses indicating the formation of aggregates in the latter systems due to depletion forces and/or bridging interactions induced by dissolved or adsorbed polyP, respectively. The degree of phosphate polymerization influenced neither the charge nor the aggregation mechanism. The findings clearly confirm that polyP adsorption was the driving phenomenon to induce particle aggregation in contrast to other clay types, where phosphate derivatives act as dispersion stabilizing agents. This study provides valuable insights into the early stages of aggregation in colloidal systems involving LRD and polyPs, which have a crucial role in predicting further material properties that are important to designing LRD-polyP composites for applications such as potential phosphate sources in chemical fertilizers.

2.
J Phys Chem B ; 126(44): 9095-9104, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36287607

RESUMO

The influence of gemini surfactants (GSs) on the charging and aggregation features of anionic sulfate modified latex (SL) particles was investigated by light scattering techniques in aqueous dispersions. The GSs of short alkyl chains (2-4-2 and 4-4-4) resembled simple inert salts and aggregated the particles by charge screening. The adsorption of GSs of longer alkyl chains (8-4-8, 12-4-12, and 12-6-12) on SL led to charge neutralization and overcharging of the particles, giving rise to destabilization and restabilization of the dispersions, respectively. The comparison of the interfacial behavior of dimeric and the corresponding monomeric surfactants revealed that the former shows a more profound influence on the colloidal stability due to the presence of double positively charged head groups and hydrophobic tails, which is favorable to enhancing both electrostatic and hydrophobic particle-GS and GS-GS interactions at the interface. The different extent of the particle-GS interactions was responsible for the variation of the GS destabilization power, following the 2-4-2 < 4-4-4 < 8-4-8 < 12-4-12 order, while the length of the GS spacer did not affect the adsorption and aggregation processes. The valence of the background salts strongly influenced the stability of the SL-GS dispersions through altering the electrostatic interactions, which was more pronounced for multivalent counterions. These findings indicate that both electrostatic and hydrophobic effects play crucial roles in the adsorption of GSs on oppositely charged particles and in the corresponding aggregation mechanism. The major interparticle forces can be adjusted by changing the structure and concentration of the GSs and inorganic electrolytes present in the systems.


Assuntos
Sais , Tensoativos , Tensoativos/química , Sais/química , Microesferas , Coloides/química , Adsorção , Água
3.
Antioxidants (Basel) ; 12(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36670961

RESUMO

The radical scavenging activity of three molecular antioxidants (trolox, rutin and ellagic acid) was investigated in different solvents with and without added polymer-based colloidal particles (SL-IP-2). Rutin and ellagic acid showed poor solubility in water, preventing the accurate measurement of the effective antioxidant concentration values, which were determined in ethanol/water (EtOH/H2O) mixtures. The presence of trolox and rutin changed neither the surface charge properties nor the size of SL-IP-2 in these solvents, while significant adsorption on SL-IP-2 was observed for ellagic acid leading to overcharging and rapid particle aggregation at appropriately high antioxidant concentrations in EtOH/H2O. The differences in the radical scavenging capacity of trolox and ellagic acid that was observed in homogeneous solutions using water or EtOH/H2O as solvents vanished in the presence of the particles. Rutin lost its activity after addition of SL-IP-2 due to the larger molecular size and lower exposure of the functional groups to the substrate upon interaction with the particles. The obtained results shed light on the importance of the type of solvent and particle-antioxidant interfacial effects on the radical decomposition ability of molecular antioxidants, which is of crucial importance in industrial processes involving heterogeneous systems.

4.
Langmuir ; 37(40): 11869-11879, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34601883

RESUMO

Colloidal stability was investigated in two types of particle systems, namely, with bare (h-HNT) and polyimidazolium-functionalized (h-HNT-IP-2) alkali-treated halloysite nanotubes in solutions of metal salts and ionic liquids (ILs). The valence of the metal ions and the number of carbon atoms in the hydrocarbon chain of the IL cations (1-methylimidazolium (MIM+), 1-ethyl-3-methylimidazolium (EMIM+), 1-butyl-3-methylimidazolium (BMIM+), and 1-hexyl-3-methylimidazolium (HMIM+)) were altered in the measurements. For the bare h-HNT with a negative surface charge, multivalent counterions destabilized the dispersions at low values of critical coagulation concentration (CCC) in line with the Schulze-Hardy rule. In the presence of ILs, significant adsorption of HMIM+ took place on the h-HNT surface, leading to charge neutralization and overcharging at appropriate concentrations. A weaker affinity was observed for MIM+, EMIM+, and BMIM+, while they adsorbed on the particles to different extents. The order HMIM+ < BMIM+ < EMIM+ < MIM+ was obtained for the CCCs of h-HNT, indicating that HMIM+ was the most effective in the destabilization of the colloids. For h-HNT-IP-2 with a positive surface charge, no specific interaction was observed between the salt and the IL constituent cations and the particles, i.e., the determined charge and aggregation parameters were the same within experimental error, irrespective of the type of co-ions. These results clearly indicate the relevance of ion adsorption in the colloidal stability of the nanotubes and thus provide useful information for further design of processable h-HNT dispersions.

5.
Soft Matter ; 17(40): 9116-9124, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34569591

RESUMO

The influence of ionic liquid (IL) anions and cations on the charging and aggregation properties of layered double hydroxide (LDH) nanoparticles was systematically studied. Surface charge characteristics were explored using zeta potential measurements, while aggregation processes were followed in dynamic light scattering experiments in aqueous IL solutions. The results revealed that the aggregation rates of LDHs were sensitive to the composition of ILs leading to IL-dependent critical coagulation concentration (CCC) values being obtained. The origin of the interparticle forces was found to be electrostatic, in line with the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, as the experimental aggregation kinetics were in good agreement with the predicted data. The ion specific adsorption of IL anions led to different surface charge densities for LDHs, which decreased in the order Cl- > Br- > DCA- > SCN- > NO3- for counterions and BMIM+ > BMPYR+ > BMPY+ > BMPIP+ in the case of coions resulting in weaker electrical double layer repulsion in these sequences. Since van der Waals forces are always present and their strength does not depend significantly on the ionic strength, the CCC values decreased in the above order. The present results shed light on the importance of the interfacial arrangement of the IL constituent ions on the colloidal stability of particle dispersions and provide important information on the design of stable or unstable particle-ionic liquid systems.

6.
Adv Colloid Interface Sci ; 294: 102456, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34107320

RESUMO

Homoaggregation of dispersed particles, i.e., aggregation of particles of the same shape, charge, size, and composition, is a well-studied field and various theoretical and experimental approaches exist to understand the major phenomena involved in such processes. Besides, heteroaggregation of particles, i.e., aggregation of particles of different shape, charge, size, or composition, has attracted widespread interest due to its relevance in various biomedical, industrial, and environmental systems. For instance, heteroaggregation of plastic contaminant particles with naturally occurring solid materials in waters (e.g., clays, silica and organic polymers) plays an important role in the decontamination technologies. Moreover, nanofabrication processes involving heteroaggregation of particles to prepare novel composite materials are widely implemented in fundamental science and in more applied disciplines. In such procedures, stable particle dispersions are mixed and the desired structure forms owing to the presence of interparticle forces of various origins, which can be tuned by performing appropriate surface functionalization as well as altering the experimental conditions. These composites are widely used in different fields from sensing through catalysis to biomedical delivery. The present review summarizes the recent progresses in the field including new findings regarding the basic principles in particle heteroaggregation, preparation strategies of heteroaggregated structures of different morphology, and the application of the obtained hybrid composites. Such information will be very helpful to those involved in the design of novel composites consisting of different nano or colloidal particles.


Assuntos
Preparações Farmacêuticas , Dióxido de Silício , Polímeros
7.
J Phys Chem B ; 124(43): 9757-9765, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33076658

RESUMO

Charging and aggregation processes were studied in aqueous dispersions of halloysite nanotubes (HNTs) in the presence of monovalent inorganic electrolytes and ionic liquid (IL) constituents. The same type of co-ion (same sign of charge as HNT) was used in all systems, while the type of counterions (opposite sign of charge as HNT) was systematically varied. The affinity of the inorganic cations to the HNT surface influenced their destabilizing power leading to an increase in the critical coagulation concentration (CCC) of HNT dispersions in the Cs+ < K+ < Na+ order. This trend agrees with the classical Hofmeister series for negatively charged hydrophobic surfaces. For the IL cations, the CCCs increased in the order BMPY+ < BMPIP+ < BMPYR+ < BMIM+. An unexpectedly strong adsorption of BMPY+ cations on the HNT surface was observed giving rise to charge neutralization and reversal of the oppositely charged outer surface of HNT. The direct Hofmeister series was extended with these IL cations. The main aggregation mechanism was rationalized within the classical theory developed by Derjaguin, Landau, Verwey, and Overbeek, while ion specific effects resulted in remarkable variation in the CCC values. The results unambiguously proved that the hydration level of the surface and the counterions plays a crucial role in the formation of the ionic composition at the solid-liquid interface and consequently, in the colloidal stability of the HNT particles in both inorganic salt and IL solutions.

8.
Phys Chem Chem Phys ; 22(42): 24764-24770, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33107516

RESUMO

Ion specific effects of ionic liquid (IL) constituents on the surface charge and aggregation properties of two types of particles (positively charged amidine (AL) and polyimidazolium-functionalized sulfate (SL-IP-2) latexes) were investigated in IL solutions containing different anions and the 1-butyl-3-methylimidazolium cation. For the AL systems, the affinity of IL anions to the particle surface followed the sequence chloride < bromide < nitrate < acetate. The critical coagulation concentration values decreased in the same order indicating that ion specific adsorption determines the surface charge density and the extent of the repulsive interparticle forces. In contrast, no tendencies were observed for the SL-IP-2 particles, i.e., both charge and aggregation features were insensitive to the type of anions. This surprising behavior sheds light on that surface functionalization with the polyimidazolium compound effectively masks interfacial ion specific effects. These results indicate new possible routes to the design of processable particle dispersions in ILs irrespective of their composition.

9.
ACS Appl Bio Mater ; 3(1): 522-530, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019395

RESUMO

An antioxidant material composed of halloysite nanotubes (HNTs), protamine sulfate polyelectrolyte (PSP), and superoxide dismutase (SOD) enzyme was prepared by self-assembly of the PSP and SOD biomacromolecules on the nanoparticulate support. The structural, colloidal and biocatalytic features were assessed. Adsorption of PSP on the oppositely charged HNT surface at appropriate loadings gave rise to charge neutralization and overcharging, which resulted in unstable and stable dispersions, respectively. The formation of a saturated PSP layer on the HNT led to the development of positive surface charge and to remarkable resistance against salt-induced aggregation making the obtained HNT-PSP hybrid suitable for immobilization of negatively charged SOD. No enzyme leakage was observed from the HNT-PSP-SOD composite indicating sufficient structural stability of this material due to electrostatic, hydrophobic, and hydrogen bonding interactions taking place between the particles and the biomacromolecules. Enzymatic assays revealed that SOD kept its functional integrity upon immobilization and showed high activity in superoxide radical dismutation. In this way, stable antioxidant bionanocomposite dispersions were obtained, which can be used as antioxidants in heterogeneous samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...