Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
G3 (Bethesda) ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839049

RESUMO

There are a staggering number of publicly available bacterial genome sequences (at writing, 2.0 million assemblies in NCBI's GenBank alone), and the deposition rate continues to increase. This wealth of data begs for phylogenetic analyses to place these sequences within an evolutionary context. A phylogenetic placement not only aids in taxonomic classification, but informs the evolution of novel phenotypes, targets of selection, and horizontal gene transfer. Building trees from multi-gene codon alignments is a laborious task that requires bioinformatic expertise, rigorous curation of orthologs, and heavy computation. Compounding the problem is the lack of tools that can streamline these processes for building trees from large scale genomic data. Here we present OrthoPhyl, which takes bacterial genome assemblies and reconstructs trees from whole genome codon alignments. The analysis pipeline can analyze an arbitrarily large number of input genomes (>1200 tested here) by identifying a diversity spanning subset of assemblies and using these genomes to build gene models to infer orthologs in the full dataset. To illustrate the versatility of OrthoPhyl, we show three use-cases: E. coli/Shigella, Brucella/Ochrobactrum, and the order Rickettsiales. We compare trees generated with OrthoPhyl to trees generated with kSNP3 and GToTree along with published trees using alternative methods. We show that OrthoPhyl trees are consistent with other methods while incorporating more data, allowing for greater numbers of input genomes, and more flexibility of analysis.

2.
Sci Rep ; 11(1): 14876, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290271

RESUMO

Meat from wildlife species (bushmeat) represents a major source of dietary protein in low- and middle-income countries where humans and wildlife live in close proximity. Despite the occurrence of zoonotic pathogens in wildlife, their prevalence in bushmeat remains unknown. To assess the risk of exposure to major pathogens in bushmeat, a total of 3784 samples, both fresh and processed, were collected from three major regions in Tanzania during both rainy and dry seasons, and were screened by real-time PCR for the presence of DNA signatures of Bacillus anthracis (B. anthracis), Brucella spp. (Brucella) and Coxiella burnetii (Coxiella). The analysis identified DNA signatures of B. anthracis (0.48%), Brucella (0.9%), and Coxiella (0.66%) in a total of 77 samples. Highest prevalence rates of B. anthracis, Brucella, and Coxiella were observed in wildebeest (56%), dik-dik (50%), and impala (24%), respectively. Fresh samples, those collected during the rainy season, and samples from Selous or Serengeti had a greater relative risk of being positive. Microbiome characterization identified Firmicutes and Proteobacteria as the most abundant phyla. The results highlight and define potential risks of exposure to endemic wildlife diseases from bushmeat and the need for future investigations to address the public health and emerging infectious disease risks associated with bushmeat harvesting, trade, and consumption.


Assuntos
Bacillus anthracis/genética , Zoonoses Bacterianas/microbiologia , Zoonoses Bacterianas/transmissão , Brucella/genética , Coxiella burnetii/genética , DNA Bacteriano/análise , Microbiologia de Alimentos , Carne/microbiologia , Animais , Animais Selvagens , Bacillus anthracis/isolamento & purificação , Zoonoses Bacterianas/prevenção & controle , Brucella/isolamento & purificação , Coxiella burnetii/isolamento & purificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Risco , Estações do Ano , Tanzânia
3.
Int J Med Microbiol ; 311(4): 151511, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33975122

RESUMO

Super-shed (SS) Escherichia coli O157 (E. coli O157) demonstrate a strong, aggregative, locus of enterocyte effacement (LEE)-independent adherence phenotype on bovine recto-anal junction squamous epithelial (RSE) cells, and harbor polymorphisms in non-LEE-adherence-related loci, including in the type 1 fimbriae operon. To elucidate the role of type 1 fimbriae in strain- and host-specific adherence, we evaluated the entire Fim operon (FimB-H) and its adhesion (FimH) deletion mutants in four E. coli O157 strains, SS17, SS52, SS77 and EDL933, and evaluated the adherence phenotype in bovine RSE and human HEp-2 adherence assays. Consistent with the prevailing dogma that fimH expression is genetically switched off in E. coli O157, the ΔfimHSS52, ΔfimB-HSS52, ΔfimB-HSS17, and ΔfimHSS77 mutants remained unchanged in adherence phenotype to RSE cells. In contrast, the ΔfimHSS17 and ΔfimB-HSS77 mutants changed from a wild-type strong and aggregative, to a moderate and diffuse adherence phenotype, while both ΔfimHEDL933 and ΔfimB-HEDL933 mutants demonstrated enhanced binding to RSE cells (p < 0.05). Additionally, both ΔfimHSS17 and ΔfimHEDL933 were non-adherent to HEp-2 cells (p < 0.05). Complementation of the mutant strains with their respective wild-type genes restored parental phenotypes. Microscopy revealed that the SS17 and EDL933 strains indeed carry type 1 fimbriae-like structures shorter than those seen in uropathogenic E. coli. Taken together, these results provide compelling evidence for a strain and host cell type-dependent role of fimH and the fim operon in E. coli O157 adherence that needs to be further evaluated.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Proteínas de Escherichia coli , Animais , Aderência Bacteriana , Bovinos , Proteínas de Ligação a DNA , Infecções por Escherichia coli/veterinária , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Fímbrias Bacterianas/genética , Humanos , Integrases , Fenótipo
4.
Commun Biol ; 4(1): 267, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627795

RESUMO

Millions of individuals who have recovered from SARS-CoV-2 infection may be eligible to participate in convalescent plasma donor programs, yet the optimal window for donating high neutralizing titer convalescent plasma for COVID-19 immunotherapy remains unknown. Here we studied the response trajectories of antibodies directed to the SARS-CoV-2 surface spike glycoprotein and in vitro SARS-CoV-2 live virus neutralizing titers (VN) in 175 convalescent donors longitudinally sampled for up to 142 days post onset of symptoms (DPO). We observed robust IgM, IgG, and viral neutralization responses to SARS-CoV-2 that persist, in the aggregate, for at least 100 DPO. However, there is a notable decline in VN titers ≥160 for convalescent plasma therapy, starting 60 DPO. The results also show that individuals 30 years of age or younger have significantly lower VN, IgG and IgM antibody titers than those in the older age groups; and individuals with greater disease severity also have significantly higher IgM and IgG antibody titers. Taken together, these findings define the optimal window for donating convalescent plasma useful for immunotherapy of COVID-19 patients and reveal important predictors of an ideal plasma donor.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Doadores de Sangue , COVID-19/imunologia , SARS-CoV-2/imunologia , Adulto , Fatores Etários , Idoso , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/sangue , COVID-19/terapia , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Fatores de Tempo , Adulto Jovem
5.
Int J Microbiol ; 2021: 8868151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33574851

RESUMO

Shiga toxin-producing, enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is a major foodborne pathogen causing symptoms ranging from simple intestinal discomfort to bloody diarrhea and life-threatening hemolytic uremic syndrome in humans. Cattle can be asymptomatically colonized by O157:H7 predominantly at the rectoanal junction (RAJ). Colonization of the RAJ is highly associated with the shedding of O157:H7 in bovine feces. Supershedding (SS) is a phenomenon that has been reported in some cattle that shed more than 104 colony-forming units of O57:H7 per gram of feces, 100-1000 times more or greater than normal shedders. The unique bovine RAJ cell adherence model revealed that O157:H7 employs a LEE-independent mechanism of attachment to one of the RAJ cell types, the squamous epithelial (RSE) cells. Nine nonfimbrial adhesins were selected to determine their role in the characteristic hyperadherent phenotype of SS O157 on bovine RSE cells, in comparison with human HEp-2 cells. A number of single nucleotide polymorphisms (SNPs) were found amongst these nonfimbrial adhesins across a number of SS isolates. In human cells, deletion of yfaL reduced the adherence of both EDL933 and SS17. However, deletion of eae resulted in a significant loss of adherence in SS17 whereas deletion of wzzB and iha in EDL933 resulted in the same loss of adherence to HEp-2 cells. On RSE cells, none of these nonfimbrial deletion mutants were able to alter the adherence phenotype of SS17. In EDL933, deletion of cah resulted in mitigated adherence. Surprisingly, four nonfimbrial adhesin gene deletions were actually able to confer the hyperadherent phenotype on RSE cells. Overall, this study reveals that the contribution of nonfimbrial adhesins to the adherence mechanisms and functions of O157:H7 is both strain and host cell type dependent as well as indicates a possible role of these nonfimbrial adhesins in the SS phenotype exhibited on RSE cells.

6.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414309

RESUMO

We report the complete 4,352,172-bp genome sequence of Mycobacterium orygis strain 51145 assembled into a single circular chromosome. Comparative genomic analyses with other lineages of the Mycobacterium tuberculosis complex can provide insights into the biology, evolution, and epidemiology of this important group of pathogenic mycobacteria.

7.
PLoS One ; 15(9): e0237590, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32925949

RESUMO

Bushmeat harvesting and consumption represents a potential risk for the spillover of endemic zoonotic pathogens, yet remains a common practice in many parts of the world. Given that the harvesting and selling of bushmeat is illegal in Tanzania and other parts of Africa, the supply chain is informal and may include hunters, whole-sellers, retailers, and individual resellers who typically sell bushmeat in small pieces. These pieces are often further processed, obscuring species-identifying morphological characteristics, contributing to incomplete or mistaken knowledge of species of origin and potentially confounding assessments of pathogen spillover risk and bushmeat offtake. The current investigation sought to identify the species of origin and assess the concordance between seller-reported and laboratory-confirmed species of origin of bushmeat harvested from in and around the Serengeti National Park in Tanzania. After obtaining necessary permits, the species of origin of a total of 151 bushmeat samples purchased from known intermediaries from 2016 to 2018 were characterized by PCR and sequence analysis of the cytochrome B (CytB) gene. Based on these sequence analyses, 30%, 95% Confidence Interval (CI: 24.4-38.6) of bushmeat samples were misidentified by sellers. Misreporting amongst the top five source species (wildebeest, buffalo, impala, zebra, and giraffe) ranged from 20% (CI: 11.4-33.2) for samples reported as wildebeest to 47% (CI: 22.2-72.7) for samples reported as zebra although there was no systematic bias in reporting. Our findings suggest that while misreporting errors are unlikely to confound wildlife offtake estimates for bushmeat consumption within the Serengeti ecosystem, the role of misreporting bias on the risk of spillover events of endemic zoonotic infections from bushmeat requires further investigation.


Assuntos
Animais Selvagens , Carne/provisão & distribuição , Zoonoses/etiologia , Animais , Animais Selvagens/genética , Búfalos/genética , Comércio , Citocromos b/genética , Ecossistema , Equidae/genética , Girafas/genética , Humanos , Parques Recreativos , Tanzânia/epidemiologia
8.
Lancet Microbe ; 1(2): e66-e73, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32642742

RESUMO

BACKGROUND: Zoonotic tuberculosis is defined as human infection with Mycobacterium bovis. Although globally, India has the largest number of human tuberculosis cases and the largest cattle population, in which bovine tuberculosis is endemic, the burden of zoonotic tuberculosis is unknown. The aim of this study was to obtain estimates of the human prevalence of animal-associated members of the Mycobacterium tuberculosis complex (MTBC) at a large referral hospital in India. METHODS: We did a molecular epidemiological surveillance study of 940 positive mycobacteria growth indicator tube (MGIT) cultures, collected from patients visiting the outpatient department at Christian Medical College (Vellore, India) with suspected tuberculosis between Oct 1, 2018, and March 31, 2019. A PCR-based approach was applied to subspeciate cultures. Isolates identified as MTBC other than M tuberculosis or as inconclusive on PCR were subject to whole-genome sequencing (WGS), and phylogenetically compared with publicly available MTBC sequences from south Asia. Sequences from WGS were deposited in the National Center for Biotechnology Information Sequence Read Archive, accession number SRP226525 (BioProject database number PRJNA575883). FINDINGS: The 940 MGIT cultures were from 548 pulmonary and 392 extrapulmonary samples. A conclusive identification was obtained for all 940 isolates; wild-type M bovis was not identified. The isolates consisted of M tuberculosis (913 [97·1%] isolates), Mycobacterium orygis (seven [0·7%]), M bovis BCG (five [0·5%]), and non-tuberculous mycobacteria (15 [1·6%]). Subspecies were assigned for 25 isolates by WGS, which were analysed against 715 MTBC sequences from south Asia. Among the 715 genomes, no M bovis was identified. Four isolates of cattle origin were dispersed among human sequences within M tuberculosis lineage 1, and the seven M orygis isolates from human MGIT cultures were dispersed among sequences from cattle. INTERPRETATION: M bovis prevalence in humans is an inadequate proxy of zoonotic tuberculosis. The recovery of M orygis from humans highlights the need to use a broadened definition, including MTBC subspecies such as M orygis, to investigate zoonotic tuberculosis. The identification of M tuberculosis in cattle also reinforces the need for One Health investigations in countries with endemic bovine tuberculosis. FUNDING: Bill & Melinda Gates Foundation, Canadian Institutes for Health Research.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose Bovina , Tuberculose , Animais , Canadá , Bovinos , Humanos , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Tuberculose/epidemiologia , Tuberculose Bovina/epidemiologia
9.
Sci Rep ; 9(1): 18086, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792246

RESUMO

Bushmeat, the meat and organs derived from wildlife species, is a common source of animal protein in the diets of those living in sub-Saharan Africa and is frequently associated with zoonotic spillover of dangerous pathogens. Given the frequent consumption of bushmeat in this region and the lack of knowledge about the microbial communities associated with this meat, the microbiome of 56 fresh and processed bushmeat samples ascertained from three districts in the Western Serengeti ecosystem in Tanzania was characterized using 16S rRNA metagenomic sequencing. The results show that the most abundant phyla present in bushmeat samples include Firmicutes (67.8%), Proteobacteria (18.4%), Cyanobacteria (8.9%), and Bacteroidetes (3.1%). Regardless of wildlife species, sample condition, season, or region, the microbiome is diverse across all samples, with no significant difference in alpha or beta diversity. The findings also suggest the presence of DNA signatures of potentially dangerous zoonotic pathogens, including those from the genus Bacillus, Brucella, Coxiella, and others, in bushmeat. Together, this investigation provides a better understanding of the microbiome associated with this major food source in samples collected from the Western Serengeti in Tanzania and highlights a need for future investigations on the potential health risks associated with the harvesting, trade, and consumption of bushmeat in Sub-Saharan Africa.


Assuntos
Animais Selvagens/microbiologia , Carne/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Ecossistema , Humanos , Carne/provisão & distribuição , Microbiota , RNA Ribossômico 16S/genética , Tanzânia , Zoonoses/etiologia , Zoonoses/microbiologia
10.
Sci Rep ; 9(1): 17573, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772281

RESUMO

Considerable effort has been directed toward controlling Johne's disease (JD), a chronic granulomatous intestinal inflammatory disease caused by Mycobacterium avium subsp. paratuberculosis (MAP) in cattle and other ruminants. However, progress in controlling the spread of MAP infection has been impeded by the lack of reliable diagnostic tests that can identify animals early in the infection process and help break the transmission chain. To identify reliable antigens for early diagnosis of MAP infection, we constructed a MAP protein array with 868 purified recombinant MAP proteins, and screened a total of 180 well-characterized serum samples from cows assigned to 4 groups based on previous serological and fecal test results: negative low exposure (NL, n = 30); negative high exposure (NH, n = 30); fecal-positive, ELISA-negative (F + E-, n = 60); and both fecal- and ELISA-positive (F + E+, n = 60). The analyses identified a total of 49 candidate antigens in the NH, F + E-, and F + E+ with reactivity compared with the NL group (p < 0.01), a majority of which have not been previously identified. While some of the antigens were identified as reactive in only one of the groups, others showed reactivity in multiple groups, including NH (n = 28), F + E- (n = 26), and F + E+ (n = 17) groups. Using combinations of top reactive antigens in each group, the results reveal sensitivities of 60.0%, 73.3%, and 81.7% in the NH, F + E-, and F + E+, respectively at 90% specificity, suggesting that early detection of infection in animals may be possible and enable better opportunities to reduce within herd transmission that may be otherwise missed by traditional serological assays that are biased towards more heavily infected animals. Together, the results suggest that several of the novel candidate antigens identified in this study, particularly those that were reactive in the NH and F + E- groups, have potential utility for the early sero-diagnosis of MAP infection.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Doenças dos Bovinos/diagnóstico , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/diagnóstico , Análise Serial de Proteínas/veterinária , Animais , Bovinos , Doenças dos Bovinos/imunologia , Diagnóstico Precoce , Ensaio de Imunoadsorção Enzimática , Paratuberculose/imunologia , Testes Sorológicos/métodos , Testes Sorológicos/veterinária
11.
Front Microbiol ; 10: 1432, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281305

RESUMO

Newcastle disease virus (NDV) causes substantial economic losses to smallholder farmers in low- and middle-income countries with high levels of morbidity and mortality in poultry flocks. Previous investigations have suggested differing levels of susceptibility to NDV between specific inbred lines and amongst breeds of chickens, however, the mechanisms contributing to this remain poorly understood. Studies have shown that some of these differences in levels of susceptibility to NDV infection may be accounted for by variability in the innate immune response amongst various breeds of poultry to NDV infection. Recent studies, in inbred Fayoumi and Leghorn lines, uncovered conserved, breed-dependent, and subline-dependent responses. To better understand the role of innate immune genes in engendering a protective immune response, we assessed the transcriptional responses to NDV of three highly outbred Tanzanian local chicken ecotypes, the Kuchi, the Morogoro Medium, and the Ching'wekwe. Hierarchical clustering and principal coordinate analysis of the gene expression profiles of 21-day old chick embryos infected with NDV clustered in an ecotype-dependent manner and was consistent with the relative viral loads for each of the three ecotypes. The Kuchi and Morogoro Medium exhibit significantly higher viral loads than the Ching'wekwe. The results show that the outbred ecotypes with increased levels of expression of CCL4, NOS2, and SOCS1 also had higher viral loads. The higher expression of SOCS1 is inconsistent with the expression in inbred lines. These differences may uncover new mechanisms or pathways in these populations that may have otherwise been overlooked when examining the response in highly inbred lines. Taken together, our findings provide insights on the specific conserved and differentially expressed innate immune-related genes involved the response of highly outbred chicken lines to NDV. This also suggests that several of the specific innate immunity related genes identified in the current investigation may serve as markers for the selection of chickens with reduced susceptibility to NDV.

12.
BMC Bioinformatics ; 20(1): 374, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31269897

RESUMO

BACKGROUND: One of the major challenges facing investigators in the microbiome field is turning large numbers of reads generated by next-generation sequencing (NGS) platforms into biological knowledge. Effective analytical workflows that guarantee reproducibility, repeatability, and result provenance are essential requirements of modern microbiome research. For nearly a decade, several state-of-the-art bioinformatics tools have been developed for understanding microbial communities living in a given sample. However, most of these tools are built with many functions that require an in-depth understanding of their implementation and the choice of additional tools for visualizing the final output. Furthermore, microbiome analysis can be time-consuming and may even require more advanced programming skills which some investigators may be lacking. RESULTS: We have developed a wrapper named iMAP (Integrated Microbiome Analysis Pipeline) to provide the microbiome research community with a user-friendly and portable tool that integrates bioinformatics analysis and data visualization. The iMAP tool wraps functionalities for metadata profiling, quality control of reads, sequence processing and classification, and diversity analysis of operational taxonomic units. This pipeline is also capable of generating web-based progress reports for enhancing an approach referred to as review-as-you-go (RAYG). For the most part, the profiling of microbial community is done using functionalities implemented in Mothur or QIIME2 platform. Also, it uses different R packages for graphics and R-markdown for generating progress reports. We have used a case study to demonstrate the application of the iMAP pipeline. CONCLUSIONS: The iMAP pipeline integrates several functionalities for better identification of microbial communities present in a given sample. The pipeline performs in-depth quality control that guarantees high-quality results and accurate conclusions. The vibrant visuals produced by the pipeline facilitate a better understanding of the complex and multidimensional microbiome data. The integrated RAYG approach enables the generation of web-based reports, which provides the investigators with the intermediate output that can be reviewed progressively. The intensively analyzed case study set a model for microbiome data analysis.


Assuntos
Microbiota , Software , Bactérias/classificação , Bactérias/genética , Sequência de Bases , Biologia Computacional/métodos , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética
13.
Sci Rep ; 9(1): 7209, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31076577

RESUMO

Newcastle disease virus (NDV) is a threat to the global poultry industry, but particularly for smallholder farmers in low- and middle-income countries. Previous reports suggest that some breeds of chickens are less susceptible to NDV infection, however, the mechanisms contributing to this are unknown. We here examined the comparative transcriptional responses of innate immune genes to NDV infection in inbred sublines of the Fayoumi and Leghorn breeds known to differ in their relative susceptibility to infection as well as at the microchromosome bearing the major histocompatability complex (MHC) locus. The analysis identified a set of five core genes, Mx1, IRF1, IRF7, STAT1, and SOCS1, that are up-regulated regardless of subline. Several genes were differentially expressed in a breed- or subline-dependent manner. The breed-dependent response involved TLR3, NOS2, LITAF, and IFIH1 in the Fayoumi versus IL8, CAMP, and CCL4 in the Leghorn. Further analysis identified subline-dependent differences in the pro-inflammatory response within the Fayoumi breed that are likely influenced by the MHC. These results have identified conserved, breed-dependent, and subline-dependent innate immune responses to NDV infection in chickens, and provide a strong framework for the future characterization of the specific roles of genes and pathways that influence the susceptibility of chickens to NDV infection.


Assuntos
Imunidade Inata , Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/virologia , Animais , Embrião de Galinha , Resistência à Doença , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Doença de Newcastle/imunologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Seleção Artificial , Regulação para Cima
14.
Front Genet ; 9: 61, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535762

RESUMO

Traditional approaches to assess the immune response of chickens to infection are through animal trials, which are expensive, require enhanced biosecurity, compromise welfare, and are frequently influenced by confounding variables. Since the chicken embryo becomes immunocompetent prior to hatch, we here characterized the transcriptional response of selected innate immune genes to Newcastle disease virus (NDV) infection in chicken embryos at days 10, 14, and 18 of embryonic development. The results suggest that the innate immune response 72 h after challenge of 18-day chicken embryo is both consistent and robust. The expression of CCL5, Mx1, and TLR3 in lung tissues of NDV challenged chicken embryos from the outbred Kuroiler and Tanzanian local ecotype lines showed that their expression was several orders of magnitude higher in the Kuroiler than in the local ecotypes. Next, the expression patterns of three additional innate-immunity related genes, IL-8, IRF-1, and STAT1, were examined in the highly congenic Fayoumi (M5.1 and M15.2) and Leghorn (Ghs6 and Ghs13) sublines that differ only at the microchromosome bearing the major histocompatibility locus. The results show that the Ghs13 Leghorn subline had a consistently higher expression of all genes except IL-8 and expression seemed to be subline-dependent rather than breed-dependent, suggesting that the innate immune response of chicken embryos to NDV infection may be genetically controlled by the MHC-locus. Taken together, the results suggest that the chicken embryo may represent a promising model to studying the patterns and sources of variation of the avian innate immune response to infection with NDV and related pathogens.

15.
Appl Environ Microbiol ; 84(1)2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29054868

RESUMO

Cah is a calcium-binding autotransporter protein involved in autoaggregation and biofilm formation. Although cah is widespread in Shiga toxin-producing Escherichia coli (STEC), we detected mutations in cah at a frequency of 31.3% in this pathogen. In STEC O157:H7 supershedder strain SS17, a large deletion results in a smaller coding sequence, encoding a protein lacking the C-terminal 71 amino acids compared with Cah in STEC O157:H7 strain EDL933. We examined the function of Cah in biofilm formation and host colonization to better understand the selective pressures for cah mutations. EDL933-Cah played a conditional role in biofilm formation in vitro: it enhanced E. coli DH5α biofilm formation on glass surfaces under agitated culture conditions that prevented autoaggregation but inhibited biofilm formation under hydrostatic conditions that facilitated autoaggregation. This function appeared to be strain dependent since Cah-mediated biofilm formation was diminished when an EDL933 cah gene was expressed in SS17. Deletion of cah in EDL933 enhanced bacterial attachment to spinach leaves and altered the adherence pattern of EDL933 to bovine recto-anal junction squamous epithelial (RSE) cells. In contrast, in trans expression of EDL933 cah in SS17 increased its attachment to leaf surfaces, and in DH5α, it enhanced its adherence to RSE cells. Hence, the ecological function of Cah appears to be modulated by environmental conditions and other bacterial strain-specific properties. Considering the prevalence of cah in STEC and its role in attachment and biofilm formation, cah mutations might be selected in ecological niches in which inactivation of Cah would result in an increased fitness in STEC during colonization of plants or animal hosts.IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) harbors genes encoding diverse adhesins, and many of these are known to play an important role in bacterial attachment and host colonization. We demonstrated here that the autotransporter protein Cah confers on E. coli DH5α cells a strong autoaggregative phenotype that is inversely correlated with its ability to form biofilms and plays a strain-specific role in plant and animal colonization by STEC. Although cah is widespread in the STEC population, we detected a mutation rate of 31.3% in cah, which is similar to that reported for rpoS and fimH The formation of cell aggregates due to increased bacterium-to-bacterium interactions may be disadvantageous to bacterial populations under conditions that favor a planktonic state in STEC. Therefore, a loss-of-function mutation in cah is likely a selective trait in STEC when autoaggregative properties become detrimental to bacterial cells and may contribute to the adaptability of STEC to fluctuating environments.


Assuntos
Proteínas de Escherichia coli/genética , Mutação , Escherichia coli Shiga Toxigênica/fisiologia , Canal Anal/microbiologia , Animais , Bovinos , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/metabolismo , Folhas de Planta/microbiologia , Reto/microbiologia , Escherichia coli Shiga Toxigênica/genética , Spinacia oleracea/microbiologia
16.
PLoS One ; 12(12): e0189783, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29261761

RESUMO

Johne's Disease (JD), caused by Mycobacterium avium subspecies paratuberculosis (MAP), results in significant economic loss to livestock production. The early detection of MAP infection in animals with extant serological assays has remained challenging due to the low sensitivity of commercially available ELISA tests, a fact that has hampered the development of effective JD control programs. Our recent protein microarray-based studies identified several promising candidate antigens that are immunogenic during different stages of MAP infection. To evaluate these antigens for use in diagnostic assays and reliably identify animals with MAP infection, a multiplex (Luminex®) assay was developed using color-coded flourescent beads coupled to 6 MAP recombinant proteins and applied to screen 180 serum and 90 milk samples from cows at different stages of MAP infection including negative (NL), fecal test positive/ELISA negative (F+E-), and fecal positive/ELISA positive (F+E+). The results show that while serum antibody reactivities to each of the 6 antigens were highest in F+E+ group, antibody reactivity to three of the six antigens were identified in the F+E- group, suggesting that these three antigens are expressed and provoke antibody responses during the early infection stages with MAP. Further, antibodies against all six antigens were elevated in milk samples from both the F+E- and F+E+ groups in comparison to the NL group (p<0.01). Taken together, the results of our investigation suggest that multiplex bead-based assays are able to reliably identify MAP infection, even during early stages when antibody responses in animals are undetectable with widely used commercial ELISA tests.


Assuntos
Doenças dos Bovinos/microbiologia , Imunoensaio/métodos , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/microbiologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/imunologia , Fluorescência , Leite/microbiologia , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/sangue , Paratuberculose/imunologia , Curva ROC , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade , Soro/microbiologia
17.
PLoS One ; 12(9): e0184373, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28863177

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease (JD), a chronic intestinal inflammatory disease of cattle and other ruminants. JD has a high herd prevalence and causes serious animal health problems and significant economic loss in domesticated ruminants throughout the world. Since serological detection of MAP infected animals during the early stages of infection remains challenging due to the low sensitivity of extant assays, we screened 180 well-characterized serum samples using a whole proteome microarray from Mycobacterium tuberculosis (MTB), a close relative of MAP. Based on extensive testing of serum and milk samples, fecal culture and qPCR for direct detection of MAP, the samples were previously assigned to one of 4 groups: negative low exposure (n = 30, NL); negative high exposure (n = 30, NH); fecal positive, ELISA negative (n = 60, F+E-); and fecal positive, ELISA positive (n = 60, F+E+). Of the 740 reactive proteins, several antigens were serologically recognized early but not late in infection, suggesting a complex and dynamic evolution of the MAP humoral immune response during disease progression. Ordinal logistic regression models identified a subset of 47 candidate proteins with significantly different normalized intensity values (p<0.05), including 12 in the NH and 23 in F+E- groups, suggesting potential utility for the early detection of MAP infected animals. Next, the diagnostic utility of four MAP orthologs (MAP1569, MAP2942c, MAP2609, and MAP1272c) was assessed and reveal moderate to high diagnostic sensitivities (range 48.3% to 76.7%) and specificity (range 96.7% to 100%), with a combined 88.3% sensitivity and 96.7% specificity. Taken together, the results of our analyses have identified several candidate MAP proteins of potential utility for the early detection of MAP infection, as well individual MAP proteins that may serve as the foundation for the next generation of well-defined serological diagnosis of JD in cattle.


Assuntos
Doenças dos Bovinos/diagnóstico , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/diagnóstico , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/microbiologia , Ensaio de Imunoadsorção Enzimática , Fezes , Mycobacterium tuberculosis/imunologia , Paratuberculose/sangue , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Análise de Regressão , Sensibilidade e Especificidade
18.
PLoS One ; 12(8): e0182940, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28797098

RESUMO

Shiga toxin-producing Escherichia coli O157:H7 (O157) are zoonotic foodborne pathogens and of major public health concern that cause considerable intestinal and extra-intestinal illnesses in humans. O157 colonize the recto-anal junction (RAJ) of asymptomatic cattle who shed the bacterium into the environment through fecal matter. A small subset of cattle, termed super-shedders (SS), excrete O157 at a rate (≥ 104 CFU/g of feces) that is several orders of magnitude greater than other colonized cattle and play a major role in the prevalence and transmission of O157. To better understand microbial factors contributing to super-shedding we have recently sequenced two SS isolates, SS17 (GenBank accession no. CP008805) and SS52 (GenBank accession no. CP010304) and shown that SS isolates display a distinctive strongly adherent phenotype on bovine rectal squamous epithelial cells. Here we present a detailed comparative genomics analysis of SS17 and SS52 with other previously characterized O157 strains (EC4115, EDL933, Sakai, TW14359). The results highlight specific polymorphisms and genomic features shared amongst SS strains, and reveal several SNPs that are shared amongst SS isolates, including in genes involved in motility, adherence, and metabolism. Finally, our analyses reveal distinctive patterns of distribution of phage-associated genes amongst the two SS and other isolates. Together, the results of our comparative genomics studies suggest that while SS17 and SS52 share genomic features with other lineage I/II isolates, they likely have distinct recent evolutionary histories. Future comparative and functional genomic studies are needed to decipher the precise molecular basis for super shedding in O157.


Assuntos
Derrame de Bactérias , Doenças dos Bovinos/microbiologia , Bovinos/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli O157/genética , Escherichia coli O157/fisiologia , Animais , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/isolamento & purificação , Genoma Bacteriano , Humanos , Polimorfismo de Nucleotídeo Único
19.
PLoS One ; 11(7): e0159770, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27438701

RESUMO

Helminth infections and nutrition can independently alter the composition and abundance of the gastrointestinal microbiota, however, their combined effect is poorly understood. Here, we used the T. retortaeformis-rabbit system to examine how the helminth infection and host restriction from coprophagy/ready-to-absorb nutrients affected the duodenal microbiota, and how these changes related to the acquired immune response at the site of infection. A factorial experiment was performed where the bacterial community, its functionality and the immune response were examined in four treatments (Infect, Infect+Collar, Control+Collar and Control). Helminths reduced the diversity and abundance of the microbiota while the combination of parasites and coprophagic restriction led to a more diversified and abundant microbiota than infected cases, without significantly affecting the intensity of infection. Animals restricted from coprophagy and free from parasites exhibited the richest and most abundant bacterial community. By forcing the individuals to absorb nutrients from less digested food, the coprophagic restriction appears to have facilitated the diversity and proliferation of bacteria in the duodenum. Changes in the microbiota were more clearly associated with changes in the immune response for the infected than the nutrient restricted animals. The functional and metabolic characteristics of the duodenal microbiota were not significantly different between treatments. Overall, infection and diet affect the gut microbiota but their interactions and outcome can be complex. These findings can have important implications for the development of control measures to helminth infections where poor nutrition/malnutrition can also be a concern.


Assuntos
Microbioma Gastrointestinal/genética , Helmintíase/microbiologia , Imunidade Inata/genética , Microbiota/genética , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Coprofagia , Digestão/genética , Ingestão de Alimentos/genética , Helmintíase/genética , Helmintíase/metabolismo , Helmintos/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Intestino Delgado/microbiologia , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...