Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Tissue Res ; 392(3): 631-641, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36781481

RESUMO

Mammalian taste bud cells are composed of several distinct cell types and differentiated from surrounding tongue epithelial cells. However, the detailed mechanisms underlying their differentiation have yet to be elucidated. In the present study, we examined an Ascl1-expressing cell lineage using circumvallate papillae (CVP) of newborn mice and taste organoids (three-dimensional self-organized tissue cultures), which allow studying the differentiation of taste bud cells in fine detail ex vivo. Using lineage-tracing analysis, we observed that Ascl1 lineage cells expressed type II and III taste cell markers both CVP of newborn mice and taste organoids. However, the coexpression rate in type II cells was lower than that in type III cells. Furthermore, we found that the generation of the cells which express type II and III cell markers was suppressed in taste organoids lacking Ascl1-expressing cells. These findings suggest that Ascl1-expressing precursor cells can differentiate into both type III and a subset of type II taste cells.


Assuntos
Papilas Gustativas , Camundongos , Animais , Paladar , Língua , Diferenciação Celular , Organoides , Mamíferos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
2.
Biochem Biophys Res Commun ; 642: 75-82, 2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36566565

RESUMO

The right and left mandibular processes derived from the first branchial arch grow toward the midline and fuse to create the rostral tip region of the mandible during mandibular development. Severe and mild cases of failure in this process results in rare median cleft of the lower lip and cleft chin, respectively. The detailed molecular mechanisms of mandibular tip formation are unknown. We hypothesize that the Msx1 gene is involved in mandibular tip development, because Msx1 has a central role in other craniofacial morphogenesis processes, such as teeth and the secondary palate development. Normal Msx1 expression was observed in the rostral end of the developing mandible; however, a reduced expression of Msx1 was observed in the soft tissue of the mandibular tip than in the lower incisor bud region. The rostral tip of the right and left mandibular processes was unfused in both control and Msx1-null (Msx1-/-) mice at embryonic day (E) 12.5; however, a complete fusion of these processes was observed at E13.5 in the control. The fused processes exhibited a conical shape in the control, whereas the same region remained bifurcated in Msx1-/-. This phenotype occurred with 100% penetrance and was not restored at subsequent stages of development. Furthermore, Meckel's cartilage in addition to the outline surface soft tissues was also unfused and bifurcated in Msx1-/- from E14.5 onward. The expression of phosho-Smad1/5, which is a mediator of bone morphogenetic protein (Bmp) signaling, was downregulated in the mandibular tip of Msx1-/- at E12.5 and E13.5, probably due to the downregulated Bmp4 expression in the neighboring lower incisor bud. Cell proliferation was significantly reduced in the midline region of the mandibular tip in Msx1-/- at the same developmental stages in which downregulation of pSmad was observed. Our results indicate that Msx1 is indispensable for proper mandibular tip development.


Assuntos
Fator de Transcrição MSX1 , Dente , Camundongos , Animais , Fator de Transcrição MSX1/genética , Fator de Transcrição MSX1/metabolismo , Mandíbula , Dente/metabolismo , Morfogênese/genética , Transdução de Sinais
4.
J Oral Biosci ; 63(4): 420-428, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34492379

RESUMO

OBJECTIVES: Myogenic differentiation 1 (Myod1) is involved in the expression of taste receptor type 1 member 1 (Tas1r1) during myogenic differentiation. Further, the target genes of Myod1 participate in transcriptional control, muscle development, and synaptic function. We examined, for the first time, the function of Myod1 in the transcriptional regulation of Tas1r1. METHODS: ENCODE chromatin immunoprecipitation and sequencing (ChIP-seq) data of myogenically differentiated C2C12 cells were analyzed to identify the Myod1 and transcription factor 12 (Tcf12) binding sites in the Tas1r1 promoter region. Luciferase reporter assays, DNA affinity precipitation assays, and co-immunoprecipitation assays were also performed to identify the functions of Myod1, Tcf12, and Krüppel-like factor 5 (Klf5). RESULTS: Based on ENCODE ChIP-seq, Myod1 bound to the Tas1r1 promoter region containing E-boxes 1-3. Luciferase reporter assays revealed that site-directed E-box1 mutations significantly reduced promoter activation induced by Myod1 overexpression. According to the DNA affinity precipitation assay and co-immunoprecipitation assay, Myod1 formed a heterodimer with Tcf12 and bound to E-box1. Further, Klf5 bound to the GT box near E-box1, activating Tas1r1 expression. CONCLUSIONS: During myogenic differentiation, the Myod1/Tcf12 heterodimer, in collaboration with Klf5, binds to E-box1 and activates Tas1r1 expression.


Assuntos
Proteína MyoD , Paladar , Animais , Expressão Gênica , Camundongos , Desenvolvimento Muscular/genética , Proteína MyoD/genética , Fatores de Transcrição/genética
5.
Cleft Palate Craniofac J ; 58(6): 697-706, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34047208

RESUMO

OBJECTIVE: Cleft palate is among the most frequent congenital defects in humans. While gene-environment multifactorial threshold models have been proposed to explain this cleft palate formation, only a few experimental models have verified this theory. This study aimed to clarify whether gene-environment interaction can cause cleft palate through a combination of specific genetic and environmental factors. METHODS: Msx1 heterozygosity in mice (Msx1+/-) was selected as a genetic factor since human MSX1 gene mutations may cause nonsyndromic cleft palate. As an environmental factor, hypoxic stress was induced in pregnant mice by administration of the antiepileptic drug phenytoin, a known arrhythmia inducer, during palatal development from embryonic day (E) 11 to E14. Embryos were dissected at E13 for histological analysis or at E17 for recording of the palatal state. RESULTS: Phenytoin administration downregulated cell proliferation in palatal processes in both wild-type and Msx1+/- embryos. Bone morphogenetic protein 4 (Bmp4) expression was slightly downregulated in the anterior palatal process of Msx1+/- embryos. Although Msx1+/- embryos do not show cleft palate under normal conditions, phenytoin administration induced a significantly higher incidence of cleft palate in Msx1+/- embryos compared to wild-type littermates. CONCLUSION: Our data suggest that cleft palate may occur because of the additive effects of Bmp4 downregulation as a result of Msx1 heterozygosity and decreased cell proliferation upon hypoxic stress. Human carriers of MSX1 mutations may have to take more precautions during pregnancy to avoid exposure to environmental risks.


Assuntos
Fissura Palatina , Fator de Transcrição MSX1 , Estresse Oxidativo , Animais , Fissura Palatina/induzido quimicamente , Fissura Palatina/genética , Fator de Transcrição MSX1/genética , Camundongos , Palato , Fenitoína , Transdução de Sinais
6.
Cell Tissue Res ; 383(2): 667-675, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32960355

RESUMO

Mammalian taste bud cells have a limited lifespan and differentiate into type I, II, and III cells from basal cells (type IV cells) (postmitotic precursor cells). However, little is known regarding the cell lineage within taste buds. In this study, we investigated the cell fate of Mash1-positive precursor cells utilizing the Cre-loxP system to explore the differentiation of taste bud cells. We found that Mash1-expressing cells in Ascl1CreERT2::CAG-floxed tdTomato mice differentiated into taste bud cells that expressed aromatic L-amino acid decarboxylase (AADC) and carbonic anhydrase IV (CA4) (type III cell markers), but did not differentiate into most of gustducin (type II cell marker)-positive cells. Additionally, we found that Mash1-expressing cells could differentiate into phospholipase C ß2 (PLCß2)-positive cells, which have a shorter lifespan compared with AADC- and CA4-positive cells. These results suggest that Mash1-positive precursor cells could differentiate into type III cells, but not into most of type II cells, in the taste buds.


Assuntos
Envelhecimento/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Fosfolipase C beta/metabolismo , Papilas Gustativas/citologia , Papilas Gustativas/metabolismo , Animais , Biomarcadores/metabolismo , Camundongos
7.
Biomed Res ; 40(2): 67-78, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30982802

RESUMO

T1R1 and T1R3 are receptors expressed in taste buds that detect L-amino acids. These receptors are also expressed throughout diverse organ systems, such as the digestive system and muscle tissue, and are thought to function as amino acid sensors. The mechanism of transcriptional regulation of the mouse T1R1 gene (Tas1r1) has not been determined; therefore, in this study, we examined the function of Tas1r1 promoter in the mouse myoblast cell line, C2C12. Luciferase reporter assays showed that a 148-bp region upstream of the ATG start codon of Tas1r1 had a promoter activity. The GT box in the Tas1r1 promoter was conserved in the dog, human, mouse, and pig. Site-directed mutagenesis of this GT box significantly reduced the promoter activation. The GT box in promoters is a recurring motif for Sp/KLF family members. RNAi-mediated depletion of Sp4 and Klf5 decreased Tas1r1 expression, while overexpression of Klf5, but not Sp4, significantly increased Tas1r1 expression. The ENCODE data of chromatin immunoprecipitation and sequencing (ChIP-seq) showed that Klf5 bound to the GT box during the myogenic differentiation. Furthermore, the Klf5 knockout cell lines led to a considerable decrease in the levels of Tas1r1 expression. Collectively, these results showed that Klf5 binds to the GT box in the Tas1r1 promoter and regulates Tas1r1 expression in C2C12 cells.


Assuntos
Fatores de Transcrição Kruppel-Like/genética , Mioblastos/metabolismo , Regiões Promotoras Genéticas , Receptores Acoplados a Proteínas G/genética , Fator de Transcrição Sp4/genética , Sítio de Iniciação de Transcrição , Animais , Sequência de Bases , Sítios de Ligação , Diferenciação Celular , Linhagem Celular , Sequência Conservada , Cães , Regulação da Expressão Gênica , Genes Reporter , Humanos , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/metabolismo , Luciferases/genética , Luciferases/metabolismo , Camundongos , Desenvolvimento Muscular/genética , Mioblastos/citologia , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Fator de Transcrição Sp4/antagonistas & inibidores , Fator de Transcrição Sp4/metabolismo , Suínos
8.
Anat Sci Int ; 93(4): 422-429, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29525940

RESUMO

The gustatory cells in taste buds have been identified as paraneuronal; they possess characteristics of both neuronal and epithelial cells. Like neurons, they form synapses, store and release transmitters, and are capable of generating an action potential. Like epithelial cells, taste cells have a limited life span and are regularly replaced throughout life. However, little is known about the molecular mechanisms that regulate taste cell genesis and differentiation. In the present study, to begin to understand these mechanisms, we investigated the role of Mash1-positive cells in regulating adult taste bud cell differentiation through the loss of Mash1-positive cells using the Cre-loxP system. We found that the cells expressing type III cell markers-aromatic L-amino acid decarboxylase (AADC), carbonic anhydrase 4 (CA4), glutamate decarboxylase 67 (GAD67), neural cell adhesion molecule (NCAM), and synaptosomal-associated protein 25 (SNAP25)-were significantly reduced in the circumvallate taste buds after the administration of tamoxifen. However, gustducin and phospholipase C beta2 (PLC beta2)-markers of type II taste bud cells-were not significantly changed in the circumvallate taste buds after the administration of tamoxifen. These results suggest that Mash1-positive cells could be differentiated to type III cells, not type II cells in the taste buds.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Células Epiteliais/fisiologia , Neurônios/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/efeitos dos fármacos , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Fosfolipase C beta/metabolismo , Tamoxifeno/farmacologia , Papilas Gustativas/metabolismo , Papilas Gustativas/fisiologia
9.
Gene Expr Patterns ; 27: 99-105, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155305

RESUMO

The Hey family (also known as Chf, Herp, Hesr, and Hrt) is a set of Hairy/Enhancer of Split-related basic helix-loop-helix type transcription factors. Hey1, Hey2, and HeyL have been identified in mammals. Although Hey proteins are known to regulate cardiovascular development, muscle homeostasis, osteogenesis, neurogenesis, and oncogenesis, their roles in tooth development have been largely obscure. Therefore, this study aimed to clarify detailed spatiotemporal expression patterns of Hey1 and Hey2 in developing molars and incisors of mice by section in situ hybridization. Hey1 and Hey2 were not significantly expressed in tooth germs at epithelial thickening, bud, and cap stages during molar development. In the dental epithelium in molars at the bell stage and incisors, Hey2 transcripts were restricted to the undifferentiated inner enamel epithelium and down-regulated in preameloblasts and ameloblasts. On the other hand, Hey1 was mainly expressed in preameloblasts and down-regulated in differentiated ameloblasts. Both genes were not significantly expressed in other dental epithelial tissues, including the outer enamel epithelium, stellate reticulum, and stratum intermedium cells. In the dental mesenchyme, Hey1 was intensely transcribed in the subodontoblastic layer of the dental pulp in both molars and incisors, whereas Hey2 was barely detectable in mesenchymal components. Our data implied that Hey2 function is restricted to transient amplifying cells of the ameloblast cell lineage and that Hey1 plays a role in the composition of the subodontoblastic layer, in addition to ameloblast differentiation. These findings provide novel clues for the better understanding of tooth development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Odontogênese , Proteínas Repressoras/metabolismo , Germe de Dente/metabolismo , Ameloblastos/citologia , Ameloblastos/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ciclo Celular/genética , Esmalte Dentário/citologia , Esmalte Dentário/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Repressoras/genética , Germe de Dente/crescimento & desenvolvimento
10.
Acta Histochem Cytochem ; 49(1): 21-8, 2016 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-27006518

RESUMO

Several theories have been proposed regarding pain transmission mechanisms in tooth. However, the exact signaling mechanism from odontoblasts to pulp nerves remains to be clarified. Recently, ATP-associated pain transmission has been reported, but it is unclear whether ATP is involved in tooth pain transmission. In the present study, we focused on the vesicular nucleotide transporter (VNUT), a transporter of ATP into vesicles, and examined whether VNUT was involved in ATP release from odontoblasts. We examined the expression of VNUT in rat pulp by RT-PCR and immunostaining. ATP release from cultured odontoblast-like cells with heat stimulation was evaluated using ATP luciferase methods. VNUT was expressed in pulp tissue, and the distribution of VNUT-immunopositive vesicles was confirmed in odontoblasts. In odontoblasts, some VNUT-immunopositive vesicles were colocalized with membrane fusion proteins. Additionally P2X3, an ATP receptor, immunopositive axons were distributed between odontoblasts. The ATP release by thermal stimulation from odontoblast-like cells was inhibited by the addition of siRNA for VNUT. These findings suggest that cytosolic ATP is transported by VNUT and that the ATP in the vesicles is then released from odontoblasts to ATP receptors on axons. ATP vesicle transport in odontoblasts seems to be a key mechanism for signal transduction from odontoblasts to axons in the pulp.

11.
Arch Oral Biol ; 62: 86-92, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26655952

RESUMO

OBJECTIVE: During orthodontic tooth movement, bone resorption and inhibition of bone formation occur on the compressed side, thereby preventing ankylosis. Periodontal ligament (PDL) cells control bone metabolism and inhibition of bone formation on the compressed side by secreting bone-formation inhibitory factors such as asporin (ASPN) or sclerostin (encoded by SOST). The aim of this study was to identify the inhibitory factors of bone formation in PDL cells. DESIGN: In vitro, the changes in expression of ASPN and SOST and subsequent protein release in human PDL (hPDL) cells were assessed by semi-quantitative polymerase chain reaction (PCR), real-time PCR, and immunofluorescence in hPDL cells subjected to centrifugal force using a centrifuge (45, 90, 135, and 160 × g). In vivo, we applied a compressive force using the Waldo method in rats, and examined the distribution of ASPN or sclerostin by immunohistochemistry. RESULTS: In vitro, hPDL cells subjected to 90 × g for 24h demonstrated upregulated ASPN and downregulated SOST expressions, which were confirmed by immunofluorescent staining. In addition, the formation of mineralized tissue by human osteoblasts was significantly inhibited by the addition of medium from hPDL cells cultured during compressive force as well as the addition of equivalent amounts of ASPN peptide. In vivo, asporin-positive immunoreactive PDL cells and osteoclasts were found on the compressed side, whereas few sclerostin-positive PDL cells were observed. CONCLUSIONS: PDL cells subjected to an optimal compressive force induce the expression and release of ASPN, which inhibits bone formation during orthodontic tooth movement on the compressed side.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Osteogênese/fisiologia , Ligamento Periodontal/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Morfogenéticas Ósseas/biossíntese , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular , Células Cultivadas , Proteínas da Matriz Extracelular/biossíntese , Expressão Gênica , Marcadores Genéticos , Humanos , Masculino , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Pressão , Ratos , Ratos Sprague-Dawley , Estresse Mecânico , Técnicas de Movimentação Dentária
12.
Neuropeptides ; 48(6): 399-406, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25464890

RESUMO

Various studies have shown a relationship between nerves and bones. Recent evidence suggests that both sensory and sympathetic nerves affect bone metabolism; however, little is known about how neuropeptides are involved in the differentiation of pluripotent stem cells into osteoblastic (OB) cells. To evaluate the putative effects of neuropeptides during the differentiation of mouse induced pluripotent stem (iPS) cells into calcified tissue-forming OB cells, we investigated the expression patterns of neuropeptide receptors at each differentiation stage. Mouse iPS cells were seeded onto feeder cells and then transferred to low-attachment culture dishes to form embryoid bodies (EBs). EBs were cultured for 4 weeks in osteoblastic differentiation medium. The expression of α1-adrenergic receptor (AR), α2-AR, ß2-AR, neuropeptide Y1 receptor (NPY1-R), neuropeptide Y2 receptor (NPY2-R), calcitonin gene-related protein receptor (CGRP-R), and neurokinin 1-R (NK1-R) was assessed by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR. Among these neuropeptide receptors, CGRP-R and ß2-AR were expressed at all stages of cell differentiation, including the iPS cell stage, with peak expression occurring at the early osteoblastic differentiation stage. Another sensory nervous system receptor, NK1-R, was expressed mainly in the late osteoblastic differentiation stage. Furthermore, CGRP-R mRNA showed an additional small peak corresponding to EBs cultured for 3 days, suggesting that EBs may be affected by serum CGRP. These data suggest that the sensory nervous system receptor CGRP-R and the sympathetic nervous system receptor ß2-AR may be involved in the differentiation of iPS cells into the osteoblastic lineage. It follows from these findings that CGRP and ß2-AR may regulate cell differentiation in the iPS and EB stages, and that each neuropeptide has an optimal period of influence during the differentiation process.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , RNA Mensageiro/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores de Neuropeptídeos/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Receptores da Neurocinina-1/metabolismo , Receptores de Neuropeptídeo Y/metabolismo
13.
Chem Senses ; 39(5): 403-14, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24682237

RESUMO

It has been reported that a subset of type III taste cells express glutamate decarboxylase (GAD)67, which is a molecule that synthesizes gamma-aminobutyric acid (GABA), and that Mash1 could be a potential regulator of the development of GABAnergic neurons via Dlx transcription factors in the central nervous system. In this study, we investigated the expression of GAD67 and Dlx in the embryonic taste buds of the soft palate and circumvallate papilla using Mash1 knockout (KO)/GAD67-GFP knock-in mice. In the wild-type animal, a subset of type III taste cells contained GAD67 in the taste buds of the soft palate and the developing circumvallate papilla, whereas GAD67-expressing taste bud cells were missing from Mash1 KO mice. A subset of type III cells expressed mRNA for Dlx5 in the wild-type animals, whereas Dlx5-expressing cells were not evident in the apical part of the circumvallate papilla and taste buds in the soft palate of Mash1 KO mice. Our results suggest that Mash1 is required for the expression of GAD67 and Dlx5 in taste bud cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Homeodomínio/metabolismo , Papilas Gustativas/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Glutamato Descarboxilase/genética , Proteínas de Homeodomínio/genética , Camundongos Knockout , Palato Mole/embriologia , Palato Mole/metabolismo , Língua/embriologia , Língua/metabolismo
14.
Cell Tissue Res ; 353(3): 391-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23636420

RESUMO

Synaptogyrins are conserved components of the exocytic apparatus and function as regulators of Ca(2+)-dependent exocytosis. The synaptogyrin family comprises three isoforms: two neuronal (synaptogyrin-1 and -3) and one ubiquitous (synaptogyrin-2) form. Although the expression patterns of the exocytic proteins synaptotagmin-1, SNAP-25, synaptobrevin-2 and synaptophysin have been elucidated in taste buds, the function and expression pattern of synaptogyrin-1 in rat gustatory tissues have not been determined. Therefore, we examined the expression patterns of synaptogyrin-1 and several cell-specific markers of type II and III cells in rat gustatory tissues. Reverse transcription/polymerase chain reaction assays and immunoblot analysis revealed the expression of synaptogyrin-1 mRNA and its protein in circumvallate papillae. In fungiform, foliate and circumvallate papillae, the antibody against synaptogyrin-1 immunolabeled a subset of taste bud cells and intra- and subgemmal nerve processes. Double-labeling experiments revealed the expression of synaptogyrin-1 in most taste cells immunoreactive for aromatic L-amino acid decarboxylase and the neural cell adhesion molecule. A subset of synaptogyrin-1-immunoreactive taste cells also expressed phospholipase Cß2, gustducin, or sweet taste receptor (T1R2). In addition, most synaptogyrin-1-immunoreactive taste cells expressed synaptobrevin-2. These results suggest that synaptogyrin-1 plays a regulatory role in transmission at the synapses of type III cells and is involved in exocytic function with synaptobrevin-2 in a subset of type II cells in rat taste buds.


Assuntos
Regulação da Expressão Gênica/fisiologia , Receptores Acoplados a Proteínas G/biossíntese , Sinaptogirinas/biossíntese , Papilas Gustativas/metabolismo , Animais , Exocitose/fisiologia , Masculino , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Papilas Gustativas/citologia , Proteína 2 Associada à Membrana da Vesícula/biossíntese
15.
Neuropeptides ; 47(4): 251-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23660339

RESUMO

Hemokinin-1 (HK-1) is a novel member of the tachykinin family that is encoded by preprotachykinin 4 (TAC4) and shares the neurokinin-1 receptor (NK1-R) with substance P (SP). Although HK-1 is thought to be an endogenous peripheral SP-like endocrine or paracrine molecule in locations where SP is not expressed, neither the distribution of HK-1 in the maxillofacial area nor the role HK-1 in bone tissue have been examined. In this study, we investigated the distribution of HK-1 in trigeminal ganglion (TG) and maxillary bone, and assessed the expression of HK-1 during osteoclast differentiation. In vivo, rat molars were loaded for 5 days using the Waldo method. In vitro, rat osteoclast-like cells were induced from bone marrow cells. HK-1 distribution and expression were examined by immunofluorescence staining and reverse transcription polymerase chain reaction (RT-PCR). In vivo, HK-1 was localized in rat TG neurons; however, the number of HK-1-positive neurons was less than that of SP-positive neurons. In the maxillary bone, nerve fibers, blood vessels, and osteocytes were immunopositive for HK-1. Furthermore, HK-1-positive immunoreactivity was found in osteoclasts on the pressure side. In vitro, PCR showed that TAC4 and NK1-R mRNA was expressed in osteoclasts as well as in bone marrow cells. Although SP (10⁻7 M) treatment led to an increased number of osteoclasts, HK-1 (10⁻7 M) treatment did not. The numbers of biotin-labeled HK-1 peptides bound osteoclasts significantly decreased upon incubation with unlabeled SP and biotin-labeled HK-1 compared with biotin-labeled HK-1 alone. These results suggest that HK-1 may not stimulate the differentiation and function of osteoclasts. SP-stimulated osteoclast formation is competitively regulated by peripheral HK-1 through NK1-Rs.


Assuntos
Maxila/metabolismo , Osteoclastos/metabolismo , Substância P/farmacologia , Taquicininas/metabolismo , Gânglio Trigeminal/metabolismo , Animais , Masculino , Dente Molar/efeitos dos fármacos , Dente Molar/metabolismo , Osteoclastos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores da Neurocinina-1/metabolismo , Taquicininas/farmacologia
16.
Acta Histochem Cytochem ; 46(2): 65-73, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23720605

RESUMO

Nerve growth factor (NGF) plays a critical role in the trigeminal ganglion (TG) following peripheral nerve damage in the oral region. Although neurons in the TG are surrounded by satellite glial cells (SGCs) that passively support neural function, little is known regarding NGF expression and its interactions with TG neurons and SGCs. This study was performed to examine the expression of NGF in TG neurons and SGCs with nerve damage by experimental tooth movement. An elastic band was inserted between the first and second upper molars of rats. The TG was removed at 0-7 days after tooth movement. Using in situ hybridization, NGF mRNA was expressed in both neurons and SGCs. Immunostaining for NGF demonstrated that during tooth movement the number of NGF-immunoreactive SGCs increased significantly as compared with baseline and reached maximum levels at day 3. Furthermore, the administration of the gap junction inhibitor carbenoxolone at the TG during tooth movement significantly decreased the number of NGF-immunoreactive SGCs. These results suggested that peripheral nerve damage may induce signal transduction from neurons to SGCs via gap junctions, inducing NGF expression in SGCs around neurons, and released NGF may be involved in the restoration of damaged neurons.

17.
PLoS One ; 7(1): e30032, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22253866

RESUMO

In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.


Assuntos
Receptor A2B de Adenosina/metabolismo , Papilas Gustativas/metabolismo , Paladar/fisiologia , Animais , Especificidade de Anticorpos/imunologia , Epitélio/metabolismo , Regulação da Expressão Gênica , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Receptor A2B de Adenosina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Percepção Gustatória , beta-Galactosidase/metabolismo
18.
Cell Tissue Res ; 345(2): 243-52, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21739243

RESUMO

Taste receptors and their downstream signaling molecules are activated by sugars and sweeteners in the gut and participate in the regulation of glucose transport into enterocytes. The glucose transporter families GLUT and SGLT are responsible for the absorption of glucose, GLUT4 and SGLT1 being expressed preferentially in T1R3-positive taste cells. However, the expression patterns of the other glucose transporters in mouse gustatory tissues have not yet been elucidated. Therefore, we have examined the expression patterns of the glucose transporters (GLUT1-4 and SGLT1-3) in mouse gustatory tissues. Reverse transcription/polymerase chain reaction assays have revealed that GLUT1, 3, and 4 and SGLT1 mRNAs are expressed in the circumvallate papillae. Immunohistochemical analysis has shown that SGLT1 is expressed in a subset of the epithelial cells: from the basal cell layer to the prickle cell layer and in intragemmal and extragemmal epithelium cells in the circumvallate, foliate, and fungiform papillae. GLUT1, GLUT3, and GLUT4 are expressed in the prickle cell layers and/or basal cell layers in these papillae. Moreover, GLUT1, but not GLUT3 or GLUT4, is expressed in a subset of intragemmal and extragemmal epithelium cells in these papillae. Double-labeling experiments have demonstrated that GLUT1-positive taste bud cells coexpress gustducin and inositol 1,4,5-triphosphate receptor type III. These results suggest that SGLT1 and GLUT1 play a role in glucose-sensing and/or transport in mouse taste buds.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose/biossíntese , Papilas Gustativas/metabolismo , Língua/metabolismo , Animais , Proteínas Facilitadoras de Transporte de Glucose/genética , Imuno-Histoquímica , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
19.
Dev Dyn ; 240(4): 775-84, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21322090

RESUMO

Mash1 is expressed in subsets of neuronal precursors in both the central nervous system and the peripheral nervous system. However, involvement of Mash1 in taste cell differentiation has not previously been demonstrated. In this study, we investigated the role of Mash1 in regulating taste bud differentiation using Mash1 KO mice to begin to understand the mechanisms that regulate taste bud cell differentiation. We found that aromatic L-amino acid decarboxylase (AADC) cells were not evident in either the circumvallate papilla epithelia or in taste buds in the soft palates of Mash1 KO mice. However gustducin was expressed in taste buds in the soft palates of Mash1 KO mice. These results suggest that Mash1 plays an important role in regulating the expression of AADC in type III cells in taste buds, which supports the hypothesis that different taste bud cell types have progenitor cells that are specific to each cell type.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Diferenciação Celular/genética , Papilas Gustativas/embriologia , Papilas Gustativas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Embrião de Mamíferos , Epitélio/embriologia , Epitélio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Palato/embriologia , Palato/metabolismo , Gravidez
20.
Chem Senses ; 33(3): 243-54, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18156604

RESUMO

The transient receptor potential channel, PKD2L1, is reported to be a candidate receptor for sour taste based on molecular biological and functional studies. Here, we investigated the expression pattern of PKD2L1-immunoreactivity (IR) in taste buds of the mouse. PKD2L1-IR is present in a few elongate cells in each taste bud as reported previously. The PKD2L1-expressing cells are different from those expressing PLCbeta2, a marker of Type II cells. Likewise PKD2L1-immunoreactive taste cells do not express ecto-ATPase which marks Type I cells. The PKD2L1-positive cells are immunoreactive for neural cell adhesion molecule, serotonin, PGP-9.5 (ubiquitin carboxy-terminal transferase), and chromogranin A, all of which are present in Type III taste cells. At the ultrastructural level, PKD2L1-immunoreactive cells form synapses onto afferent nerve fibers, another feature of Type III taste cells. These results are consistent with the idea that different taste cells in each taste bud perform distinct functions. We suggest that Type III cells are necessary for transduction and/or transmission of information about "sour", but have little or no role in transmission of taste information of other taste qualities.


Assuntos
Canais de Cálcio/metabolismo , Células Quimiorreceptoras/metabolismo , Receptores de Superfície Celular/metabolismo , Papilas Gustativas/metabolismo , 5-Hidroxitriptofano/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Células Quimiorreceptoras/citologia , Cromogranina A/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Laringe/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Microscopia Imunoeletrônica , Modelos Biológicos , Moléculas de Adesão de Célula Nervosa/metabolismo , Palato/metabolismo , Faringe/metabolismo , Fosfolipase C beta/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Papilas Gustativas/citologia , Papilas Gustativas/ultraestrutura , Ubiquitina Tiolesterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...