Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(27): 23050-23060, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35847282

RESUMO

Azithromycin (AZM), a macrolide antibiotic used for the treatment of chlamydial conjunctivitis, is less effective for the treatment of this disease due to its poor bioavailability (38%). Various alternatives have been developed for improving the physicochemical properties (i.e., solubility) of the AZM without much success. To overcome the problems associated with AZM, an inclusion complex employing a modified cyclodextrin, i.e., sulfobutylether-ß-cyclodextrin (SBE-ß-CD), was prepared and characterized by phase solubility studies and PXRD techniques. The results portrayed the formation of an inclusion complex of AZM with SBE-ß-CD in 1:2 molar stoichiometric ratios. This inclusion complex was later incorporated into a polymer matrix to prepare an in situ gel. Various combinations of Carbopol 934P and hydroxypropyl methylcellulose (HPMC K4M) polymers were used and evaluated by rheological and in vitro drug release studies. The optimized formulation (F4) containing Carbopol 934P (0.2% w/v) and HPMC K4M (0.2% w/v) was evaluated for clarity, pH, gelling capacity, drug content, rheological properties, in vitro drug release pattern, ocular irritation test, and antimicrobial efficacy. Finally, owing to the improved antimicrobial efficacy and increased residence time, the AZM:SBE-ß-CD in situ gel was found to be a promising formulation for the efficient treatment of bacterial ocular disease.

3.
Drug Deliv Transl Res ; 12(1): 213-228, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33486688

RESUMO

Herpes is a well-known contagious infection equally affecting both sexes. Among many antiviral drugs employed for its treatment, acyclovir (ACY) is the drug of choice. The currently available therapies of ACY suffer from limitations like poor oral bioavailability (10-15%) and high-dose requirement. The present scientific study aims to explore pluronic lecithin organogel (PLO) as a novel drug delivery platform for ACY to bring an improvement in its delivery through topical route. The properties of organogel like biocompatibility and amphiphilic nature which facilitates dissolution of various drugs of different solubility characteristics along with enhancing the permeation potential of active molecules make it a favorable drug delivery platform for the management of topical diseases. The developed PLO formulations were characterized for micromeritic characteristics, viz., zeta potential, percentage drug content, organogel morphology, skin permeation, retention, and stability studies. The selected topical formulation was further compared with the marketed one for its therapeutic efficacy by inducing cutaneous Herpes simplex virus type 1 infection followed by confirmation of viral load by immunofluorescence and PCR analyses. The developed formulation showed significant improvement over the marketed product as reflected in lesion scoring index and PCR analysis. Further, it proved better to the marketed formulation in t.i.d. treatment regimen in comparison to control. The improvement in overall performance leading to enhanced bioavailability and safety is attributed to the synergism between excipient properties and formulation characteristics. The drug ACY in this micro environment not only finds an improved delivery vehicle but it also offers enhanced drug-target interactions.


Assuntos
Herpesvirus Humano 1 , Poloxâmero , Aciclovir , Animais , Antivirais , Modelos Animais de Doenças , Feminino , Géis , Lecitinas , Masculino , Camundongos
4.
Mater Sci Eng C Mater Biol Appl ; 123: 112027, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812642

RESUMO

The tumor targeting and stimuli responsiveness behavior of intelligent drug delivery systems imparts effective therapeutic delivery and decreases the toxicity of conventional chemotherapeutic agents in off-target organs. To achieve the receptor targeting and smart drug release, several strategies have been employed to engineer nano-carrier with stimulus sensitivity. In this work, mannose receptor-targeted and matrix metalloproteinase (MMP) responsive gelatin nanoparticles were developed and assessed for its receptor targeting and "on-demand" controlled drug delivery in lung cancer therapeutics. MMPs are protease enzymes and over-expressed in tumorous tissues in all the stages of cancer. The cancer cells also have over-expressed mannose receptors on the cell surface. The surface decoration of gelatin nanoparticles with concanavalin A (con-A) tends to bind with mannose moiety of cell surface glycoproteins which enhances the cancer cell-specific higher uptake of nanoparticles. Gelatin nanoparticles have attracted significant attraction in recent years as a potential drug carrier because of its good biocompatibility and versatile physicochemical properties desirable to deliver the drug. Cisplatin was complexed with the gelatin matrix (CG-NP) to evaluate stimuli responsiveness with the lung cancer cells and its release pattern. In this smart inhalable delivery system, cisplatin loaded gelatin nanoparticles were surface decorated with con-A (CCG-NP). In tumorous cells, con-A coating is expected to enhance mannose receptor-specific cellular internalization of CCG-NP, and subsequently high level of MMP in tumor tissues would help to release cisplatin in response and ensures controlled drug release. The synthesized CCG-NP has shown enzyme triggered drug release and favorable endocytosis after incubation of 12 h compare to uncoated nanoparticles. The efficacy of CCG-NP significantly increased in presence of MMP-2 enzyme in lung cancer cell line A549 cells. It also significantly enhanced reactive oxygen species generation, cell cycle arrest in S and G2/M phase, and apoptosis in cancer cells. Therefore, inhalable CCG-NP promises a pragmatic approach to construct a receptor targeting and an "on-demand" drug delivery system to efficiently deliver the drug at the tumor site only.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Concanavalina A , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Gelatina , Neoplasias/tratamento farmacológico
5.
Colloids Surf B Biointerfaces ; 203: 111760, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33872827

RESUMO

The present study was designed to develop pH-sensitive lipid polymer hybrid nanoparticles (pHS-LPHNPs) for specific cytosolic-delivery of docetaxel (DTX). The pHS-LPHNPs-DTX formulation was prepared by self-assembled nano-precipitation technique and characterized for zeta potential, particle size, entrapment efficiency, polydispersity index (PDI), and in vitro drug release. In vitro cytotoxicity of pHS-LPHNPs-DTX was assessed on breast cancer cells (MDA-MB-231 and MCF-7) and compared with DTX-loaded conventional LPHNPs and bare DTX. In vitro cellular uptake in MDA-MB-231 cell lines showed better uptake of pHS-LPHNPs. Further, a significant reduction in the IC50 of pHS-LPHNPs-DTX against both breast cancer cells was observed. Flow cytometry results showed greater apoptosis in case of pHS-LPHNPs-DTX treated MDA-MB-231 cells. Breast cancer was experimentally induced in BALB/c female mice, and the in vivo efficacy of the developed pHS-LPHNPs formulation was assessed with respect to the pharmacokinetics, biodistribution in the vital organs (liver, kidney, heart, lungs, and spleen), percentage tumor burden, and survival of breast cancer-bearing animals. In vivo studies showed improved pharmacokinetic and target-specificity with minimum DTX circulation in the deep-seated organs in the case of pHS-LPHNPs-DTX compared to the LPHNPs-DTX and free DTX. Mice treated with pHS-LPHNPs-DTX exhibited a significantly lesser tumor burden than other treatment groups. Also, reduced distribution of DTX in the serum was evident for pHS-LPHNPs-DTX treated mice compared to the LPHNPs-DTX and free DTX. In essence, pHS-LPHNPs mediated delivery of DTX presents a viable platform for developing therapeutic-interventions against breast-cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Docetaxel/farmacologia , Portadores de Fármacos/uso terapêutico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Distribuição Tecidual
6.
Curr Drug Deliv ; 18(3): 289-296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32938349

RESUMO

The Coronavirus disease 2019 (COVID-19) has found its roots from Wuhan (China). COVID-19 is caused by a novel coronavirus SARS-CoV2, previously named as 2019-nCoV. It has spread across the globe and was declared as a pandemic by the World Health Organization (WHO) on 11th March, 2020. Currently, there is no standard drug or vaccine available for the treatment, therefore, repurposing of existing drugs is the only solution. Novel Drug Delivery Systems (NDDS) will be boon for the repurposing of drugs. The role of various NDDS in repurposing of existing drugs for the treatment of various viral diseases and their relevance in COVID-19 has been discussed in this paper. It focuses on the currently ongoing research in the implementation of NDDS in COVID-19. Moreover, it describes the role of NDDS in vaccine development for COVID-19. This paper also emphasizes how NDDS will help to develop the improved delivery systems (dosage forms) of existing therapeutic agents and also explore the new insights to find out the void spaces for potential targeted delivery. Therefore, in these tough times, NDDS and nanotechnology can be a safeguard to humanity.


Assuntos
Antivirais/administração & dosagem , Tratamento Farmacológico da COVID-19 , Sistemas de Liberação de Medicamentos , COVID-19/epidemiologia , COVID-19/virologia , Vacinas contra COVID-19 , Reposicionamento de Medicamentos , Humanos , Pandemias , SARS-CoV-2/isolamento & purificação
7.
Contemp Clin Trials Commun ; 20: 100664, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33145451

RESUMO

BACKGROUND: Effectiveness and safety of pharmaceuticals is the prime concern of every osteoarthritis (OA) treatment. Chronic administration of NSAIDs, especially in case of geriatrics, through oral route tend to compromise the patient's safety, whereas topical treatments are not found to be effective owing their poor ability to deliver drug molecules.Thus, the present study deals with a randomized, double-blind, controlled trial conducted on patients with knee osteoarthritis (OA) for comparing the performance of a novel topical gel (liposomal gel) of diclofenac with a placebo and a marketed gel. METHODS: The patients were treated and evaluated for 6 weeks as per the Western Ontario McMaster Universities (WOMAC) Index for OA. Patients were also observed for any adverse events. All the results were analyzed statistically using Kruskal-Wallis test, followed by Student's t-test at p ≤ 0.05. RESULTS: Patients treated with liposomal gel showed statistically significantly improvements in treatment in comparison to the other tested formulations. All the treatments were found to be well tolerated with no report of adverse event. The results unequivocally demonstrated the superiority of the diclofenac liposomal gel, in the relieving the symptoms of OA of the knee, in comparison to placebo and marketed gel. CONCLUSION: From above results it was revealed that the drug in liposome have higher therapeutic potential. Thus, this can be a safe and effective option for the management of chronic OA especially for geriatric patients.

8.
J Microencapsul ; 37(8): 566-576, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32928025

RESUMO

AIM: MUC-1-peptide (M-1-pep) loaded poly (lactide-co-glycolide) nanoparticles were coated with protamine sulphate (PS), M-1-pep-PS-P-NPs for targeting antigen presenting cells (APCs) to evoke cytokine release. METHODS AND RESULTS: M-1-pep-PS-P-NPs were tailored by emulsion-diffusion evaporation method and characterised in vitro under a set of rigorous parameters. The average particle size and zeta potential of optimised M-1-pep-PS-P-B-NPs was measured to be 132.21 ± 30.71 nm and 6.29 ± 0.71 mV, significantly (p < 0.01) higher than 71.24 ± 17.76-nm and -43.41 ± 3.37 mV of M-1-pep-P-NPs. Further, 50-µg/ml concentration of M-1-pep-PS-P-B-NPs displayed 82.4% cellular uptake in RAW 264.7 cells calculated in setting of fluorescence intensity significantly (p < 0.05) elevated than 63.1% of M-1-pep-P-NPs. Consistent to quantitative results, M-1-pep-PS-P-B-NPs also confirmed advanced cellular uptake (CU) in RAW 264.7 cells in contrast to M-1-pep-P-NPs suppose to be through multiple mechanisms including phagocytosis and clathrin mediated endocytosis. CONCLUSION: M-1-pep-PS-P-B-NPs must be evaluated in vivo through inhalation route of administration for antitumor prospective in lung cancer xenograft model.


Assuntos
Citocinas/metabolismo , Mucina-1/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Antígenos/química , Clatrina/química , Difusão , Endocitose , Técnicas In Vitro , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Transplante de Neoplasias , Tamanho da Partícula , Fagocitose , Células RAW 264.7 , Transdução de Sinais
9.
Int J Biol Macromol ; 161: 325-335, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32485249

RESUMO

Burn is the immense public health issue globally. Low and middle income countries face extensive deaths owing to burn injuries. Availability of conventional therapies for burns has always been painful for patients as well as expensive for our health system. Pharmaceutical experts are still searching reliable, cheap, safe and effective treatment options for burn injuries. Fusidic acid is an antibiotic of choice for the management of burns. However, fusidic acid is encountering several pharmaceutical and clinical challenges like poor skin permeability and growing drug resistance against burn wound microbes like Methicillin resistant Staphylococcus aureus (MRSA). Therefore, an effort has been made to present a concise review about molecular pathway followed by fusidic acid in the treatment of burn wound infection in addition to associated pros and cons. Furthermore, we have also summarized chitosan and phospholipid based topical dermal delivery systems customized by our team for the delivery of fusidic acid in burn wound infections on case-to-case basis. However, every coin has two sides. We recommend the integration of in-silico docking techniques with natural biomacromolecules while designing stable, patient friendly and cost effective topical drug delivery systems of fusidic acid for the management of burn wound infection as future opportunities.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Ácido Fusídico/administração & dosagem , Fosfolipídeos/química , Bandagens , Queimaduras/tratamento farmacológico , Fenômenos Químicos , Farmacorresistência Bacteriana , Humanos
10.
ACS Appl Bio Mater ; 3(8): 4987-4999, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35021676

RESUMO

The tumour site-specific stimulus responsiveness of smart drug delivery systems gives a unique system for effective therapeutic delivery with reduced toxic effects of conventional chemotherapeutic drugs. In this work, matrix metalloproteinase-2 (MMP-2)-responsive mesoporous silica nanoparticles (MSNs) were synthesized and assessed for "self-actuating" on-demand controlled drug delivery for cancer therapy. MMPs are members of protease enzymes that are generally overexpressed in cancerous tissues in all stages of cancer. MSNs have attracted significant consideration as a potential delivery system because of their robust and versatile physicochemical properties suitable to deliver the therapeutic payload. Cisplatin (Cis) was used as a model drug, which was incorporated into MSNs to evaluate targeting of lung cancer cells and their release kinetics. In this delivery system, collagen was coated on the surface of Cis-loaded MSNs (Cis-MSN) to form a capping layer, resulting in collagen-coated MSNs (Cis-col-MSN). Under normal cell conditions, a collagen-capping coat efficiently forbids the release of Cis molecules from Cis-col-MSN. The tumor microenvironment would lead to augmented drug release because of the uncapping of collagen from MSN pores due to the presence of overexpressed MMP-2 enzyme and the ensuing controlled drug release. MMP-responsive experiments have shown augmented enzyme triggered drug release. The cellular uptake and cytocompatibility studies in A549 adenocarcinomic lung cancer cell lines demonstrated that this nanocarrier could be efficiently endocytosed in 24 h and have shown favorable biocompatibility with the cells. Cytotoxicity results of Cis-col-MSN demonstrated dose-dependent toxicity. The efficacy of the Cis-col-MSN significantly enhanced with the supplementation of MMP-2 enzyme with increasing concentrations in the cell culture milieu. The efficacy of formulation was attributed to significantly enhance reactive oxygen species, cell cycle arrest, and apoptosis. It is expected that Cis-col-MSN promises a pragmatic approach to constructing an "on-demand" smart drug delivery system to deliver a therapeutic payload at the tumor site only.

11.
J Microencapsul ; 37(1): 14-28, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31718364

RESUMO

Aim: MUC-1 lipopeptide vaccine exhibited immense potential in the treatment of non-small cell lung cancer (NSCLC) in both preclinical and clinical trials. However, it lacks triggering of mucosal immunity at the site of action. Therefore, in present investigation, MUC-1 peptide-loaded poly(lactide-co-glycolide) nanoparticles (MUC-1 peptide-PLGA-NPs) and MUC-1 peptide-loaded poly(lactide-co-glycolide) non-aggregated nanoparticles (MUC-1 peptide-PLGA-NA-NPs) using Central Composite Design (CCD) were customised.Methods and Results: The mean particle size of MUC-1 peptide PLGA-NPs was estimated to be 176.7 ± 32.7 nm, significantly (p < 0.05) higher than 100.3 ± 24.3 nm of MUC-1 peptide-PLGA-NA-NPs. Furthermore, integrity and stability of MUC-1 were maintained in MUC-1 peptide PLGA-NA-NPs. MUC-1 peptide-PLGA-NA-NPs exhibited augmented cellular uptake in mouse RAW264.7 macrophages preferably by clathrin-mediated endocytosis pathway as compared to phagocytosis followed by MUC-1-peptide PLGA-NPs owing to size ≤100 nm, and spherical shape.Conclusion: MUC-1 peptide-PLGA-NA-NPs may be a potential candidate to study antitumor potential in xenograft model of NSCLC through inhalation route of administration.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Vacinas Anticâncer/administração & dosagem , Portadores de Fármacos/química , Mucina-1/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Vacinas Anticâncer/farmacocinética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Endocitose , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Macrófagos/imunologia , Camundongos , Nanopartículas/química , Fagocitose , Células RAW 264.7
12.
Int J Pharm ; 576: 118977, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31870953

RESUMO

Silver Sulphadiazine (SSD) is an effective antibacterial agent considered as the gold standard for burn wound treatment. The present study aimed to investigate EO-based organogel (SSD-EOOG) as an effective carrier system for SSD delivery in burn wound management employing Quality by Design (QbD) paradigm. The organogel-based formulations were prepared employing QbD-oriented approach and further evaluated for in vivo efficacy and stability. The developed formulations were characterized for particle size, drug content, morphology, in vitro drug release, skin safety studies, ex vivo permeation, skin retention, textural analysis and pharmacodynamic studies in murine burn wound model. I-optimal mixture design was employed for optimization and evaluating different critical quality attributes (CQAs). The optimized formulation exhibited particle size of 256.5 nm with enhanced permeation (72.33 ± 1.73%) and retention (541.20 ± 22.16 µg/cm2) across skin barrier as compared to SSD-MKT. The pharmacodynamic results proved superior therapeutic efficacy of SSD-EOOG in topical burn wounds inflicted with MRSA bacterium. The results indicated wound contraction rate (78.23 ± 5.65%) and faster re-epithelialization in SSD-EOOG treated group. The present study concluded that egg oil based organogel promoted therapeutic efficacy of SSD for burn wound treatment.


Assuntos
Queimaduras/tratamento farmacológico , Géis/química , Géis/farmacologia , Óleos/química , Sulfadiazina de Prata/química , Sulfadiazina de Prata/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Liberação Controlada de Fármacos , Feminino , Camundongos , Tamanho da Partícula , Ratos , Ratos Wistar , Pele/efeitos dos fármacos
13.
J Pharm Sci ; 108(12): 3879-3889, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31568776

RESUMO

The cost, side effects, and patient compliance-related issues of topically effective imiquimod have prevented its widespread acceptance. The present work intends to evaluate the feasibility of overcoming the shortcomings of poorly soluble and skin-penetrating immunomodulator by using biocompatible keratolytic agent with drug-loaded hybrid vesicles. Salicylic acid was complexed with phospholipid through simple mixing and incorporated into carbopol 940 gel containing drug-loaded vesicles, prepared by thin-film hydration method. The morphology, physicochemical properties, rheological behavior, release profile, and dermatokinetics of developed gel were compared with control gel (developed gel without keratolytic agent). In ex vivo drug release studies across the rat skin, there was significant increase in the steady-state permeation flux (Jss) and skin retention of drug from developed gel in comparison with control. There was favorable change in almost every evaluated dermatokinetic parameter. The innocuous nature of control gel had not changed on addition of skin structure-altering agent. The developed gel was found to be stable at room temperature and humidity for 1 year.


Assuntos
Géis/química , Imiquimode/química , Ceratolíticos/química , Administração Tópica , Animais , Fármacos Dermatológicos/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Feminino , Masculino , Camundongos , Tamanho da Partícula , Permeabilidade/efeitos dos fármacos , Fosfolipídeos/química , Ratos , Ratos Sprague-Dawley , Ácido Salicílico/química , Pele/metabolismo , Absorção Cutânea/efeitos dos fármacos
15.
AAPS PharmSciTech ; 20(5): 169, 2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31004249

RESUMO

The aim of the present study was to explore the therapeutic efficacy of microemulsion-based delivery of histidine-capped silver nanoparticles in eradicating Klebsiella pneumoniae-induced burn wound infection. The developed microemulsion was characterized on the basis of differential light scattering, phase separation, refractive index, and specific conductance. Emulgel was prepared and characterized on the basis of thixotropy, texture, differential scanning calorimetry, and release kinetics. Emulgel was further evaluated in skin irritation and in vivo studies, namely full-thickness K. pneumoniae-induced burn wound infection treatment via topical route. Efficacy of treatment was evaluated in terms of bacterial load, histopathology, wound contraction, and other infection markers. The developed emulgel provided significant in vivo antibacterial activity of histidine-capped silver nanoparticle preparations via topical route and resulted in reduction in bacterial load, wound contraction, and enhanced skin healing as well as decrement of inflammatory markers such as malondialdehyde, myeloperoxidase, and reactive nitrogen intermediate compared to untreated animals. The present study encourages the further employment of histidine-capped silver nanoparticles along with microemulsion-based drug delivery system in combating antibiotic-resistant topical infections.


Assuntos
Anti-Infecciosos Locais/administração & dosagem , Anti-Infecciosos Locais/uso terapêutico , Queimaduras/complicações , Histidina/administração & dosagem , Histidina/uso terapêutico , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae , Compostos de Prata/administração & dosagem , Compostos de Prata/uso terapêutico , Infecção dos Ferimentos/tratamento farmacológico , Administração Tópica , Animais , Sistemas de Liberação de Medicamentos , Emulsões , Feminino , Géis , Infecções por Klebsiella/microbiologia , Nanopartículas Metálicas , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Nanopartículas/uso terapêutico , Infecção dos Ferimentos/microbiologia
16.
Int J Biol Macromol ; 133: 1142-1155, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31004631

RESUMO

Fungal keratitis (FK) is treated by topical natamycin (Nat) which is an effective antifungal agent. However, it has numerous therapeutic limitations i.e. toxicity, tolerance, need of frequent dosing and patient incompliance. The aim of the present study was to develop Nat loaded trimethyl chitosan (TMC) coated mucoadhesive cationic niosomes (Muc-Cat-Nios) for prolonged and effective delivery to eyes. Niosomes were prepared using thin film hydration method and optimized using a Box-Behnken design (BBD) with the help of Design-Expert® Software. Three independent variables were considered: amount of Span 60 (X1), amount of Cholesterol [Chol(X2)] and TMC concentration (X3). The encapsulation efficiency (R1: EE%), vesicle size (R2: VS) and Zeta potential (R3: ZP) were selected as dependent variables or responses. The optimized Nios displayed spherical shape, 1034.14 nm vesicle size and 81.76% EE. Nat loaded niosomes were incubated with TMC to get mucoadhesive cationic vesicular system. Uncoated and TMC coated niosomes were characterized for mucoadhesive properties, in vitro drug release, rheological behaviour, and ex vivo permeation studies. Cationic Nios showed greater mucoadhesive potential that provided drug release for a long period of time. The promising outcomes suggest that natamycin delivery using cationic mucoadhesive niosomes could be employed for the effective treatment of fungal keratitis.


Assuntos
Portadores de Fármacos/química , Engenharia , Lipossomos/química , Mucosa/química , Adesividade , Animais , Quitosana/química , Córnea/metabolismo , Liberação Controlada de Fármacos , Cabras , Natamicina/química , Natamicina/metabolismo , Reologia , Propriedades de Superfície
17.
Expert Opin Drug Deliv ; 16(4): 377-396, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30871388

RESUMO

INTRODUCTION: The dermatophytosis are the infections, which are the most common infections worldwide, with the serious problem of high recurrence. These are characterized by invasion and multiplication of various species of dermatophytes in keratinized tissues that can affect skin, hair, and nails. AREAS COVERED: This article aims to gather information about novel strategies for effective treatment of dermatophytosis by incorporating antifungals into nanoformulations to overcome the limitations of the conventional treatment strategies. Updates related to nanosystems and research progress regarding the animal and clinical studies are also included. The current treatment options for dermatophytosis, along with the marketed formulations and patents, are also highlighted. EXPERT OPINION: For treating dermatophytosis, several therapeutic interventions are available which provide good clinical cure rates, but they have some demerits, including resistance to the antifungal agents and adverse effects associated with them. In recent years, efforts have been documented to incorporate various antifungal agents into novel carriers in order to offer better therapeutic action and overcome the limitations of the conventional treatment strategies for dermatophytosis. The success has been achieved in obtaining these formulations with enhanced antifungal activity, prolonged retention of drug, improved efficacy, increased skin penetration of the drug, and sustained release of drug.


Assuntos
Antifúngicos/administração & dosagem , Nanoestruturas , Tinha/tratamento farmacológico , Animais , Composição de Medicamentos , Humanos , Unhas/microbiologia , Pele/microbiologia
18.
AAPS PharmSciTech ; 20(4): 156, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30927154

RESUMO

The present research work explored the possibility of harnessing the benefits of vesicular carriers for overcoming imiquimod-associated complaints or side effects. Hybrid vesicles were prepared by the most common and easily scalable method, i.e., thin film hydration. The chaffing of myriad of factors, both process and material related, affecting the desirable attributes of conceived vesicles, was performed through Taguchi design. Based upon the analysis of Pareto chart and prior experiences, concentration of phospholipid and poloxamer 407 was selected for optimization by 2 levels, 13 run central composite design (CCD). The optimized hybrid vesicles contained 1% w/v phospholipid and 3% w/v poloxamer 407. The optimized hybrid vesicles were incorporated into the 3% w/v carbopol 940 gel and characterized for morphology, physicochemical properties, and rheological behavior. The release (%) and skin retention (% of total dose) across rat skin from gel at same amount of formulation was more than Imiquad®. The gel delivered the loaded cargo, preferably, in the viable region of skin and formed local depot in confocal microscopic studies. The gel followed one compartment open body dermatokinetic model in rat skin. There was not any harmful effect on the mice skin after repeated applications. The gel was stable at room conditions for 1 year.


Assuntos
Portadores de Fármacos/síntese química , Portadores de Fármacos/farmacocinética , Imiquimode/síntese química , Imiquimode/farmacocinética , Absorção Cutânea/efeitos dos fármacos , Adjuvantes Imunológicos , Animais , Estabilidade de Medicamentos , Feminino , Géis/química , Masculino , Camundongos , Técnicas de Cultura de Órgãos , Tamanho da Partícula , Fosfolipídeos/química , Fosfolipídeos/farmacocinética , Ratos , Reologia , Pele/efeitos dos fármacos , Pele/metabolismo , Absorção Cutânea/fisiologia
19.
AAPS PharmSciTech ; 20(3): 100, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30721373

RESUMO

Beta-carotene (BC), a red-colored pigment found in plants and animals, is one of the most extensively investigated carotenoids due to its provitamin-A, antioxidant, and anticancer properties. The anticancer activity of BC through oral administration is severely affected due to its low bioavailability and oxidative degradation. The present study aimed to formulate and characterize solid lipid nanoparticles (SLNs) of BC for enhanced bioavailability and therapeutic efficacy. Beta-carotene-loaded solid lipid nanoparticles (BC-SLNs) were prepared employing different combinations of glyceryl monostearate and gelucire. The characterization studies were performed for particle size, morphology, release behavior, and stability. BC-SLNs were also studied for in vitro cytotoxicity in human breast cancer cell lines (MCF-7) and pharmacokinetic studies in Wistar rats. The cytotoxicity studies confirmed that encapsulation of BC within the lipid bilayers of nanoparticles did not affect its anticancer efficacy. An improved anticancer activity was observed in BC-SLNs as compared to the free BC. BC-SLNs enhanced the bioavailability of BC on oral administration by sustaining its release from the lipid core and prolongation of circulation time in the body. Similarly, area under the curve (AUCtotal) enhanced 1.92-times more when BC was incorporated into SLNs as compared to free BC. In conclusion, solid lipid nanoparticles could be an effective and promising strategy to improve the biopharmaceutical properties of carotenoids for anticancer effects.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Nanopartículas/administração & dosagem , beta Caroteno/administração & dosagem , Administração Oral , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Disponibilidade Biológica , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Portadores de Fármacos/química , Glicerídeos/administração & dosagem , Glicerídeos/química , Glicerídeos/metabolismo , Humanos , Lipídeos , Células MCF-7 , Masculino , Nanopartículas/química , Nanopartículas/metabolismo , Tamanho da Partícula , Ratos , Ratos Wistar , beta Caroteno/química , beta Caroteno/metabolismo
20.
Drug Deliv Transl Res ; 9(4): 748-763, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30652257

RESUMO

Staphylococcus aureus (SA) and methicillin-resistant Staphylococcus aureus (MRSA) have been a major cause of morbidity in thermally injured patients. The skin barrier gets disrupted and loss of immunity further makes burn sites an easy target for bacterial colonization. In the current study, combined potential of lipid-polymer hybrid nanoparticles (LPHNs) with fusidic acid was explored as a promising strategy toward combating resistant bacteria in burn wound infection sites. The developed systems exhibited particle size (310.56 ± 5.22 nm), zeta potential (24.3 ± 4.18 mV) and entrapment efficiency (78.56 ± 3.56%) with a spherical shape. The hybrid nanoparticles were further gelled into carbopol and demonstrated better permeation (76.53 ± 1.55%) and retention characteristics (56.41 ± 4.67%) as compared to the conventional formulation. The topical delivery of FA into the skin layers by FA-LPHN gel was found to be significantly higher (p < 0.05) compared to FA-CC. The in vivo potential was further assessed in murine burn wound model inflicted with MRSA 33591 bacterium with the determination of parameters like bacterial burden, wound contraction, morphological and histopathological examination of wounds. The bacterial count decreased drastically in FA-LPHN gel group (5.22 log CFU/mL) on day 3 with significant difference in comparison to FA-CC. The wound size reduction in FA-LPHN gel (68.70 ± 3.65%) was higher as compared to FA-CC (73.30 ± 4.23%) and control groups (83.30 ± 4.40%) on day 5. The current study presents a safe and effective formulation strategy for the treatment of MRSA-infected burn wounds by providing moist environment and prevention from bacterial infection.


Assuntos
Queimaduras/tratamento farmacológico , Portadores de Fármacos/administração & dosagem , Ácido Fusídico/administração & dosagem , Staphylococcus aureus Resistente à Meticilina , Nanopartículas/administração & dosagem , Pele/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecção dos Ferimentos/tratamento farmacológico , Animais , Queimaduras/imunologia , Queimaduras/microbiologia , Citocinas/imunologia , Portadores de Fármacos/farmacocinética , Feminino , Ácido Fusídico/farmacocinética , Géis , Lipídeos/administração & dosagem , Lipídeos/farmacocinética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Camundongos Endogâmicos BALB C , Polímeros/administração & dosagem , Polímeros/farmacocinética , Ratos Wistar , Pele/efeitos dos fármacos , Pele/imunologia , Absorção Cutânea , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Infecção dos Ferimentos/imunologia , Infecção dos Ferimentos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...