Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(18): 17908-17919, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37676036

RESUMO

Only a minority of patients respond positively to cancer immunotherapy, and addressing this variability is an active area of immunotherapy research. Infiltration of tumors by immune cells is one of the most significant prognostic indicators of response and disease-free survival. However, the ability to noninvasively sample the tumor microenvironment for immune cells remains limited. Imaging in the near-infrared-II region using rare-earth nanocrystals is emerging as a powerful imaging tool for high-resolution deep-tissue imaging. In this paper, we demonstrate that these nanoparticles can be used for noninvasive in vivo imaging of tumor-infiltrating T-cells in a highly aggressive melanoma tumor model. We present nanoparticle synthesis and surface modification strategies for the generation of small, ultrabright, and biocompatible rare-earth nanocrystals necessary for deep tissue imaging of rare cell types. The ability to noninvasively monitor the immune contexture of a tumor during immunotherapy could lead to early identification of nonresponding patients in real time, leading to earlier interventions and better outcomes.


Assuntos
Melanoma , Metais Terras Raras , Nanopartículas , Humanos , Linfócitos T , Imunoterapia , Diagnóstico por Imagem , Nanopartículas/uso terapêutico , Microambiente Tumoral
2.
Sci Immunol ; 6(66): eabf1152, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860581

RESUMO

Saponins are potent and safe vaccine adjuvants, but their mechanisms of action remain incompletely understood. Here, we explored the properties of several saponin formulations, including immune-stimulatory complexes (ISCOMs) formed by the self-assembly of saponin and phospholipids in the absence or presence of the Toll-like receptor 4 agonist monophosphoryl lipid A (MPLA). We found that MPLA self-assembles with saponins to form particles physically resembling ISCOMs, which we termed saponin/MPLA nanoparticles (SMNP). Saponin-containing adjuvants exhibited distinctive mechanisms of action, altering lymph flow in a mast cell­dependent manner and promoting antigen entry into draining lymph nodes. SMNP was particularly effective, exhibiting even greater potency than the compositionally related adjuvant AS01B in mice, and primed robust germinal center B cell, TFH, and HIV tier 2 neutralizing antibodies in nonhuman primates. Together, these findings shed new light on mechanisms by which saponin adjuvants act to promote the immune response and suggest that SMNP may be a promising adjuvant in the setting of HIV, SARS-CoV-2, and other pathogens.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Adjuvantes Imunológicos/farmacologia , Linfa/efeitos dos fármacos , Saponinas/farmacologia , Receptores Toll-Like/agonistas , Animais , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Feminino , Linfa/fisiologia , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas , Ratos , Ratos Wistar
3.
Sci Rep ; 9(1): 3873, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30846704

RESUMO

Detection of biological features at the cellular level with sufficient sensitivity in complex tissue remains a major challenge. To appreciate this challenge, this would require finding tens to hundreds of cells (a 0.1 mm tumor has ~125 cells), out of ~37 trillion cells in the human body. Near-infrared optical imaging holds promise for high-resolution, deep-tissue imaging, but is limited by autofluorescence and scattering. To date, the maximum reported depth using second-window near-infrared (NIR-II: 1000-1700 nm) fluorophores is 3.2 cm through tissue. Here, we design an NIR-II imaging system, "Detection of Optically Luminescent Probes using Hyperspectral and diffuse Imaging in Near-infrared" (DOLPHIN), that resolves these challenges. DOLPHIN achieves the following: (i) resolution of probes through up to 8 cm of tissue phantom; (ii) identification of spectral and scattering signatures of tissues without a priori knowledge of background or autofluorescence; and (iii) 3D reconstruction of live whole animals. Notably, we demonstrate noninvasive real-time tracking of a 0.1 mm-sized fluorophore through the gastrointestinal tract of a living mouse, which is beyond the detection limit of current imaging modalities.


Assuntos
Imagem Óptica/instrumentação , Imagem Óptica/métodos , Tecido Adiposo/diagnóstico por imagem , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Mama/diagnóstico por imagem , Bovinos , Desenho de Equipamento , Corantes Fluorescentes , Trato Gastrointestinal/diagnóstico por imagem , Humanos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Camundongos Nus , Músculos/diagnóstico por imagem , Imagens de Fantasmas , Pele/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...