Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 17(8): 1076-85, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25543125

RESUMO

BACKGROUND: Signaling by insulin-like growth factor 1 receptor (IGF-1R) can contribute to the formation and progression of many diverse tumor types, including glioblastoma. We investigated the effect of the IGF-1R blocking antibody IMC-A12 on glioblastoma growth in different in vivo models. METHODS: U87 cells were chosen to establish rapidly growing, angiogenesis-dependent tumors in the brains of nude mice, and the GS-12 cell line was used to generate highly invasive tumors. IMC-A12 was administered using convection-enhanced local delivery. Tumor parameters were quantified histologically, and the functional relevance of IGF-1R activation was analyzed in vitro. RESULTS: IMC-A12 treatment inhibited the growth of U87 and GS-12 tumors by 75% and 50%, respectively. In GS-12 tumors, the invasive tumor extension and proliferation rate were significantly reduced by IMC-A12 treatment, while apoptosis was increased. In IMC-A12-treated U87 tumors, intratumoral vascularization was markedly decreased, and tumor cell proliferation was moderately reduced. Flow cytometry showed that <2% of U87 cells but >85% of GS-12 cells expressed IGF-1R. Activation of IGF-1R by IGF-1 and IGF-2 in GS-12 cells was blocked by IMC-A12. Both ligands stimulated GS-12 cell proliferation, and IGF-2 also stimulated migration. IMC-A12 inhibited these stimulatory effects and increased apoptosis. In U87 cells, stimulation with either ligand had no functional effect. CONCLUSIONS: IGF-1R blockade can inhibit glioblastoma growth by different mechanisms, including direct effects on the tumor cells as well as indirect anti-angiogenic effects. Hence, blocking IGF-1R may be useful to target both the highly proliferative, angiogenesis-dependent glioblastoma core component as well as the infiltrative periphery.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/fisiopatologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glioblastoma/fisiopatologia , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/imunologia , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Camundongos , Neovascularização Patológica , Ensaios Antitumorais Modelo de Xenoenxerto
2.
PLoS One ; 8(9): e73756, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086293

RESUMO

UNLABELLED: Cardiovascular disease and diabetes have been linked to shorter telomeres, but it is not yet clear which risk factors contribute to shorter telomeres in patients. Our aim was to examine whether pro-inflammatory conditioning, in combination or not with high glucose, result in a higher rate of telomere shortening during in vitro cellular ageing. Human fibroblasts from four donors were cultured for 90 days in: 1) medium lacking ascorbic acid only, 2) 10 mM buthionine sulphoximine (BSO) (pro-oxidant), 3) 25 mM D-glucose, 4) 1 ng/ml IL1B and 5) 25 mM D-glucose+1 ng/ml IL1B. Telomere length was measured with qPCR and intracellular reactive oxygen species (ROS) content and cell death with flow cytometry. Cultures treated with high glucose and BSO displayed a significantly lower growth rate, and cultures treated with IL1B showed a trend towards a higher growth rate, compared to the control [Glucose:0.14 PD/day, p<0.001, BSO: 0.11 PD/day, p = 0.006 and IL1B: 0.19 PD/day, p = 0.093 vs. CONTROL: 0.16 PD/day]. Telomere shortening with time was significantly accelerated in cultures treated with IL1B compared to the control [IL1B:-0.8%/day (95%CI:-1.1, -0.5) vs. CONTROL: -0.6%/day (95%CI:-0.8, -0.3), p = 0.012]. The hastening of telomere shortening by IL1B was only in part attenuated after adjustment for the number of cell divisions [IL1B:-4.1%/PD (95%CI:-5.7, -2.4) vs. CONTROL: -2.5%/PD (95%CI:-4.4, -0.7), p = 0.067]. The intracellular ROS content displayed 69% increase (p = 0.033) in BSO compared to the control. In aging fibroblasts, pro-inflammatory conditioning aggravates the shortening of telomeres, an effect which was only in part driven by increased cell turnover. High glucose alone did not result in greater production of ROS or telomere shortening.


Assuntos
Senescência Celular , Glucose/administração & dosagem , Inflamação/genética , Telômero , Sequência de Bases , Morte Celular , Células Cultivadas , Primers do DNA , DNA Mitocondrial/genética , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Humanos , Inflamação/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Acta Neuropathol ; 126(5): 763-80, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24005892

RESUMO

Fluctuations in oxygen tension during tissue remodeling impose a major metabolic challenge in human tumors. Stem-like tumor cells in glioblastoma, the most common malignant brain tumor, possess extraordinary metabolic flexibility, enabling them to initiate growth even under non-permissive conditions. We identified a reciprocal metabolic switch between the pentose phosphate pathway (PPP) and glycolysis in glioblastoma stem-like (GS) cells. Expression of PPP enzymes is upregulated by acute oxygenation but downregulated by hypoxia, whereas glycolysis enzymes, particularly those of the preparatory phase, are regulated inversely. Glucose flux through the PPP is reduced under hypoxia in favor of flux through glycolysis. PPP enzyme expression is elevated in human glioblastomas compared to normal brain, especially in highly proliferative tumor regions, whereas expression of parallel preparatory phase glycolysis enzymes is reduced in glioblastomas, except for strong upregulation in severely hypoxic regions. Hypoxia stimulates GS cell migration but reduces proliferation, whereas oxygenation has opposite effects, linking the metabolic switch to the "go or grow" potential of the cells. Our findings extend Warburg's observation that tumor cells predominantly utilize glycolysis for energy production, by suggesting that PPP activity is elevated in rapidly proliferating tumor cells but suppressed by acute severe hypoxic stress, favoring glycolysis and migration to protect cells against hypoxic cell damage.


Assuntos
Glioma/metabolismo , Glicólise/fisiologia , Células-Tronco Neoplásicas/metabolismo , Oxigênio/metabolismo , Via de Pentose Fosfato/fisiologia , Animais , Apoptose/fisiologia , Hipóxia Celular/fisiologia , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Nus , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
4.
Neuro Oncol ; 15(10): 1289-301, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23877316

RESUMO

BACKGROUND: The treatment efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors like erlotinib has not met expectations for glioblastoma therapy, even for EGFR-overexpressing tumors. We determined possible mechanisms of therapy resistance using the unique BS153 glioblastoma cell line, which has retained amplification of the egfr gene and expression of EGFR variant (v)III. METHODS: Functional effects of erlotinib, gefitinib, and cetuximab on BS153 proliferation, migration, and EGFR-dependent signal transduction were systematically compared in vitro. The tumor-initiating capacity of parental and treatment-resistant BS153 was studied in Naval Medical Research Institute/Foxn1(nu) mice. Potential mediators of resistance were knocked down using small interfering (si)RNA. RESULTS: Erlotinib and gefitinib inhibited proliferation and migration of BS153 in a dose-dependent manner, whereas cetuximab had no effect. BS153 developed resistance to erlotinib (BS153(resE)) but not to gefitinib. Resistance was associated with strong upregulation of EGFRvIII and subsequent activation of the phosphatidylinositol-3-OH kinase (PI3K) pathway in BS153(resE) and an increased expression of the regulatory 110-kDa delta subunit of PI3K (p110δ). Knockdown of EGFRvIII in BS153(resE) largely restored sensitivity to erlotinib. Targeting PI3K pharmacologically caused a significant decrease in cell viability, and specifically targeting p110δ by siRNA partially restored erlotinib sensitivity in BS153(resE). In vivo, BS153 formed highly invasive tumors with an unusual growth pattern, displaying numerous satellites distant from the initial injection site. Erlotinib resistance led to delayed onset of tumor growth as well as prolonged overall survival of mice without changing tumor morphology. CONCLUSIONS: EGFRvIII can mediate resistance to erlotinib in EGFR-amplified glioblastoma via an increase in PI3Kp110δ. Interfering with PI3Kp110δ can restore sensitivity toward the tyrosine kinase inhibitor.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Amplificação de Genes , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Quinazolinas/farmacologia , Animais , Apoptose , Western Blotting , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Sobrevivência Celular , Receptores ErbB/genética , Cloridrato de Erlotinib , Citometria de Fluxo , Imunofluorescência , Fatores de Transcrição Forkhead/fisiologia , Glioblastoma/patologia , Humanos , Técnicas Imunoenzimáticas , Hibridização in Situ Fluorescente , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...