Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 9245, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915310

RESUMO

Flooding is one of the major constraints for rice production in rainfed lowlands, especially in years and areas of high rainfall. Incorporating the Sub1 (Submergence1) gene into high yielding popular varieties has proven to be the most feasible approach to sustain rice production in submergence-prone areas. Introgression of this QTL into popular varieties has resulted in considerable improvement in yield after flooding. However, its impact under non-flooded conditions or years have not been thoroughly evaluated which is important for the farmers to accept and adopt any new version of their popular varieties. The present study was carried out to evaluate the effect of Sub1 on grain yield of rice in different genetic backgrounds, under non-submergence conditions, over years and locations. The study was carried out using head to head trials in farmer's fields, which enable the farmers to more accurately compare the performance of Sub1 varieties with their recurrent parents under own management. The data generated from different head to head trials revealed that the grain yield of Sub1 varieties was either statistically similar or higher than their non-Sub1 counterparts under non-submergence conditions. Thus, Sub1 rice varieties show no instance of yield penalty of the introgressed gene.


Assuntos
Adaptação Fisiológica/genética , Oryza/genética , Cruzamento/métodos , Secas , Inundações , Genes de Plantas/genética , Locos de Características Quantitativas/genética
2.
Plant Sci ; 242: 278-287, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26566845

RESUMO

Rice is a staple cereal of India cultivated in about 43.5Mha area but with relatively low average productivity. Abiotic factors like drought, flood and salinity affect rice production adversely in more than 50% of this area. Breeding rice varieties with inbuilt tolerance to these stresses offers an economically viable and sustainable option to improve rice productivity. Availability of high quality reference genome sequence of rice, knowledge of exact position of genes/QTLs governing tolerance to abiotic stresses and availability of DNA markers linked to these traits has opened up opportunities for breeders to transfer the favorable alleles into widely grown rice varieties through marker-assisted backcross breeding (MABB). A large multi-institutional project, "From QTL to variety: marker-assisted breeding of abiotic stress tolerant rice varieties with major QTLs for drought, submergence and salt tolerance" was initiated in 2010 with funding support from Department of Biotechnology, Government of India, in collaboration with International Rice Research Institute, Philippines. The main focus of this project is to improve rice productivity in the fragile ecosystems of eastern, northeastern and southern part of the country, which bear the brunt of one or the other abiotic stresses frequently. Seven consistent QTLs for grain yield under drought, namely, qDTY1.1, qDTY2.1, qDTY2.2, qDTY3.1, qDTY3.2, qDTY9.1 and qDTY12.1 are being transferred into submergence tolerant versions of three high yielding mega rice varieties, Swarna-Sub1, Samba Mahsuri-Sub1 and IR 64-Sub1. To address the problem of complete submergence due to flash floods in the major river basins, the Sub1 gene is being transferred into ten highly popular locally adapted rice varieties namely, ADT 39, ADT 46, Bahadur, HUR 105, MTU 1075, Pooja, Pratikshya, Rajendra Mahsuri, Ranjit, and Sarjoo 52. Further, to address the problem of soil salinity, Saltol, a major QTL for salt tolerance is being transferred into seven popular locally adapted rice varieties, namely, ADT 45, CR 1009, Gayatri, MTU 1010, PR 114, Pusa 44 and Sarjoo 52. Genotypic background selection is being done after BC2F2 stage using an in-house designed 50K SNP chip on a set of twenty lines for each combination, identified with phenotypic similarity in the field to the recipient parent. Near-isogenic lines with more than 90% similarity to the recipient parent are now in advanced generation field trials. These climate smart varieties are expected to improve rice productivity in the adverse ecologies and contribute to the farmer's livelihood.


Assuntos
Secas , Inundações , Oryza/genética , Locos de Características Quantitativas/genética , Tolerância ao Sal/genética , Adaptação Fisiológica/genética , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Marcadores Genéticos/genética , Programas Governamentais , Índia , Oryza/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Seleção Artificial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA