Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 100(3-1): 032217, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31639954

RESUMO

Integrable many-body systems are characterized by a complete set of preserved actions. Close to an integrable limit, a nonintegrable perturbation creates a coupling network in action space which can be short or long ranged. We analyze the dynamics of observables which become the conserved actions in the integrable limit. We compute distributions of their finite time averages and obtain the ergodization time scale T_{E} on which these distributions converge to δ distributions. We relate T_{E} to the statistics of fluctuation times of the observables, which acquire fat-tailed distributions with standard deviations σ_{τ}^{+} dominating the means µ_{τ}^{+} and establish that T_{E}∼(σ_{τ}^{+})^{2}/µ_{τ}^{+}. The Lyapunov time T_{Λ} (the inverse of the largest Lyapunov exponent) is then compared to the above time scales. We use a simple Klein-Gordon chain to emulate long- and short-range coupling networks by tuning its energy density. For long-range coupling networks T_{Λ}≈σ_{τ}^{+}, which indicates that the Lyapunov time sets the ergodization time, with chaos quickly diffusing through the coupling network. For short-range coupling networks we observe a dynamical glass, where T_{E} grows dramatically by many orders of magnitude and greatly exceeds the Lyapunov time, which satisfies T_{Λ}≲µ_{τ}^{+}. This effect arises from the formation of highly fragmented inhomogeneous distributions of chaotic groups of actions, separated by growing volumes of nonchaotic regions. These structures persist up to the ergodization time T_{E}.

2.
Phys Rev Lett ; 122(5): 054102, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30822006

RESUMO

Models of classical Josephson junction chains turn integrable in the limit of large energy densities or small Josephson energies. Close to these limits the Josephson coupling between the superconducting grains induces a short-range nonintegrable network. We compute distributions of finite-time averages of grain charges and extract the ergodization time T_{E} which controls their convergence to ergodic δ distributions. We relate T_{E} to the statistics of fluctuation times of the charges, which are dominated by fat tails. T_{E} is growing anomalously fast upon approaching the integrable limit, as compared to the Lyapunov time T_{Λ}-the inverse of the largest Lyapunov exponent-reaching astonishing ratios T_{E}/T_{Λ}≥10^{8}. The microscopic reason for the observed dynamical glass is rooted in a growing number of grains evolving over long times in a regular almost integrable fashion due to the low probability of resonant interactions with the nearest neighbors. We conjecture that the observed dynamical glass is a generic property of Josephson junction networks irrespective of their space dimensionality.

3.
Phys Rev Lett ; 120(18): 184101, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29775355

RESUMO

The microcanonical Gross-Pitaevskii (also known as the semiclassical Bose-Hubbard) lattice model dynamics is characterized by a pair of energy and norm densities. The grand canonical Gibbs distribution fails to describe a part of the density space, due to the boundedness of its kinetic energy spectrum. We define Poincaré equilibrium manifolds and compute the statistics of microcanonical excursion times off them. The tails of the distribution functions quantify the proximity of the many-body dynamics to a weakly nonergodic phase, which occurs when the average excursion time is infinite. We find that a crossover to weakly nonergodic dynamics takes place inside the non-Gibbs phase, being unnoticed by the largest Lyapunov exponent. In the ergodic part of the non-Gibbs phase, the Gibbs distribution should be replaced by an unknown modified one. We relate our findings to the corresponding integrable limit, close to which the actions are interacting through a short range coupling network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...