Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 125(32): 9304-9316, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34355564

RESUMO

This work presents a systematic assessment of QM/QM' and QM/MM models with respect to direct QM calculations for the tautomerization (neutral to zwitterion) reactions of amino acids (glycine, alanine, valine, aspartate, and neutral and protonated histidine) solvated in a 160 water cluster. The effect of varying QM region size and choice of embedding potentials, including fixed-charge and polarizable molecular mechanics force fields (TIP3P and EFP) and various semiempirical QM methods (PM7, GFN2-xTB, DFTBA, DFTB3, HF-3c, and PBEh-3c), on the accuracy of the models was examined. A surprising finding was that molecular mechanics force fields outperformed many of the semiempirical methods. Generally, the errors in the QM/QM' and QM/MM models converge slowly with respect to the QM region size, requiring 50 or more waters to be included in the QM region before the error in the model falls below 1 kcal mol-1 of its pure QM result. Different QM region selection schemes were also compared, and it was found that selection based on Natural Population Analysis (NPA) atomic charges significantly reduced the error in the QM/QM' and QM/MM models particularly if a low-quality embedding potential was used. It is envisaged that these results will be useful for the development of future hybrid QM models.


Assuntos
Prótons , Teoria Quântica , Aminoácidos , Simulação de Dinâmica Molecular , Água
2.
Molecules ; 23(10)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261616

RESUMO

This study examines whether the use of more accurate embedding potentials improves the convergence of quantum mechanics/molecular mechanics (QM/MM) models with respect to the size of the QM region. In conjunction with density functional theory calculations using the ωB97X-D functional, various embedding potentials including the TIP3P water model, the effective fragment potential (EFP), and semi-empirical methods (PM6, PM7, and DFTB) were used to simulate the deprotonation energies of solvated acid clusters. The calculations were performed on solvated neutral (HA) and cationic (HB⁺) acids clusters containing 160 and 480 water molecules using configurations sampled from molecular dynamics simulations. Consistently, the ωB97X-D/EFP model performed the best when using a minimal QM region size. The performance for the other potentials appears to be highly sensitive to the charge character of the acid/base pair. Neutral acids display the expected trend that semi-empirical methods generally perform better than TIP3P; however, an opposite trend was observed for the cationic acids. Additionally, electronic embedding provided an improvement over mechanical embedding for the cationic systems, but not the neutral acids. For the best performing ωB97X-D/EFP model, a QM region containing about 6% of the total number of solvent molecules is needed to approach within 10 kJ mol-1 of the pure QM result if the QM region was chosen based on the distance from the reaction centre.


Assuntos
Ácidos/química , Teoria Quântica , Solventes/química , Água/química , Simulação de Dinâmica Molecular , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...